SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Begum Shahina 1977 ) srt2:(2015-2019)"

Sökning: WFRF:(Begum Shahina 1977 ) > (2015-2019)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barua, Shaibal, et al. (författare)
  • Automated EEG Artifact Handling with Application in Driver Monitoring
  • 2018
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE. - 2168-2194 .- 2168-2208. ; 22:5, s. 1350-1361
  • Tidskriftsartikel (refereegranskat)abstract
    • Automated analyses of electroencephalographic (EEG) signals acquired in naturalistic environments is becoming increasingly important in areas such as brain computer interfaces and behaviour science. However, the recorded EEG in such environments is often heavily contaminated by motion artifacts and eye movements. This poses new requirements on artifact handling. The objective of this paper is to present an automated EEG artifacts handling algorithm which will be used as a pre-processing step in a driver monitoring application. The algorithm, named ARTE (Automated aRTifacts handling in EEG), is based on wavelets, independent component analysis and hierarchical clustering. The algorithm is tested on a dataset obtained from a driver sleepiness study including 30 drivers and 540 30-minute 30-channel EEG recordings. The algorithm is evaluated by a clinical neurophysiologist, by quantitative criteria (signal quality index, mean square error, relative error and mean absolute error), and by demonstrating its usefulness as a pre-processing step in driver monitoring, here exemplified with driver sleepiness classification. All results are compared with a state of the art algorithm called FORCe. The quantitative and expert evaluation results show that the two algorithms are comparable and that both algorithms significantly reduce the impact of artifacts in recorded EEG signals. When artifact handling is used as a pre-processing step in driver sleepiness classification, the classification accuracy increased by 5% when using ARTE and by 2% when using FORCe. The advantage with ARTE is that it is data driven and does not rely on additional reference signals or manually defined thresholds, making it well suited for use in dynamic settings where unforeseen and rare artifacts are commonly encountered.
  •  
2.
  • Barua, Shaibal, et al. (författare)
  • Automatic driver sleepiness detection using EEG, EOG and contextual information
  • 2019
  • Ingår i: Expert systems with applications. - : Elsevier Ltd. - 0957-4174 .- 1873-6793. ; 115, s. 121-135
  • Tidskriftsartikel (refereegranskat)abstract
    • The many vehicle crashes that are caused by driver sleepiness each year advocates the development of automated driver sleepiness detection (ADSD) systems. This study proposes an automatic sleepiness classification scheme designed using data from 30 drivers who repeatedly drove in a high-fidelity driving simulator, both in alert and in sleep deprived conditions. Driver sleepiness classification was performed using four separate classifiers: k-nearest neighbours, support vector machines, case-based reasoning, and random forest, where physiological signals and contextual information were used as sleepiness indicators. The subjective Karolinska sleepiness scale (KSS) was used as target value. An extensive evaluation on multiclass and binary classifications was carried out using 10-fold cross-validation and leave-one-out validation. With 10-fold cross-validation, the support vector machine showed better performance than the other classifiers (79% accuracy for multiclass and 93% accuracy for binary classification). The effect of individual differences was also investigated, showing a 10% increase in accuracy when data from the individual being evaluated was included in the training dataset. Overall, the support vector machine was found to be the most stable classifier. The effect of adding contextual information to the physiological features improved the classification accuracy by 4% in multiclass classification and by and 5% in binary classification.
  •  
3.
  • Nilsson, Emma, et al. (författare)
  • Vehicle Driver Monitoring : sleepiness and cognitive load
  • 2017
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • To prevent road crashes, it is important to understand driver related contributing factors. The overall aim of the Vehicle Driver Monitoring project was to advance the understanding of two such factors; sleepiness and cognitive distraction. The project aimed at finding methods to measure the two states, with focus on physiological measures, and to study their effect on driver behaviour. The data collection was done in several laboratory and driving simulator experiments. Much new knowledge and insights were gained in the project. Significant effects of cognitive load as well as of sleepiness were found in several physiological measures. The results also showed that context, including individual and environmental factors, has a great impact on driver behaviours, measures and driver experiences.
  •  
4.
  • Ahmed, Mobyen Uddin, Dr, 1976-, et al. (författare)
  • A vision-based indoor navigation system for individuals with visual impairment
  • 2019
  • Ingår i: International Journal of Artificial Intelligence. - : CESER Publications. - 0974-0635. ; 17:2, s. 188-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Navigation and orientation in an indoor environment are a challenging task for visually impaired people. This paper proposes a portable vision-based system to provide support for visually impaired persons in their daily activities. Here, machine learning algorithms are used for obstacle avoidance and object recognition. The system is intended to be used independently, easily and comfortably without taking human help. The system assists in obstacle avoidance using cameras and gives voice message feedback by using a pre-trained YOLO Neural Network for object recognition. In other parts of the system, a floor plane estimation algorithm is proposed for obstacle avoidance and fuzzy logic is used to prioritize the detected objects in a frame and generate alert to the user about possible risks. The system is implemented using the Robot Operating System (ROS) for communication on a Nvidia Jetson TX2 with a ZED stereo camera for depth calculations and headphones for user feedback, with the capability to accommodate different setup of hardware components. The parts of the system give varying results when evaluated and thus in future a large-scale evaluation is needed to implement the system and get it as a commercialized product in this area.
  •  
5.
  • Ahmed, Mobyen Uddin, 1976-, et al. (författare)
  • Big Data Analytics in Health Monitoring at Home
  • 2017
  • Ingår i: Medicinteknikdagarna 2017 MTD 2017.
  • Konferensbidrag (refereegranskat)abstract
    • This paper proposed a big data analytics approach applied in the projects ESS-H and E-care@home in the context of biomedical and health informatics with the advancement of information fusion, data abstraction, data mining, knowledge discovery, learning, and reasoning [1][2]. Data are collected through the projects, considering both the health parameters, e.g. temperature, bio-impedance, skin conductance, heart sound, blood pressure, pulse, respiration, weight, BMI, BFP, movement, activity, oxygen saturation, blood glucose, heart rate, medication compliance, ECG, EMG, and EEG, and the environmental parameters e.g. force/pressure, infrared (IR), light/luminosity, photoelectric, room-temperature, room-humidity, electrical usage, water usage, RFID localization and accelerometers. They are collected as semi-structured/unstructured, continuous/periodic, digital/paper record, single/multiple patients, once/several-times, etc. and stored in a central could server [5]. Thus, with the help of embedded system, digital technologies, wireless communication, Internet of Things (IoT) and smart sensors, massive quantities of data (so called ‘Big Data’) with value, volume, velocity, variety, veracity and variability are achieved [2]. The data analysis work in the following three steps. In Step1, pre-processing, future extraction and selection are performed based on a combination of statistical, machine learning and signal processing techniques. A novel strategy to fuse the data at feature level and as well as at data level considers a defined fusion mechanism [3]. In Step2, a combination of potential sequences in the learning and search procedure is investigated. Data mining and knowledge discovery, using the refined data from the above for rule extraction and knowledge mining, with support for anomaly detection, pattern recognition and regression are also explored here [4]. In Step3, adaptation of knowledge representation approaches is achieved by combining different artificial intelligence methods [3] [4]. To provide decision support a hybrid approach is applied utilizing different machine learning algorithms, e.g. case-based reasoning, and clustering [4]. The approach offers several data analytics tasks, e.g. information fusion, anomaly detection, rules and knowledge extraction, clustering, pattern identification, correlation analysis, linear regression, logic regression, decision trees, etc. Thus, the approach assist in decision support, early detection of symptoms, context awareness and patient’s health status in a personal environment.
  •  
6.
  • Ahmed, Mobyen Uddin, 1976-, et al. (författare)
  • Cloud-based Data Analytics on Human Factor Measurement to Improve Safer Transport
  • 2018
  • Ingår i: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Volume 225. - Cham : Springer International Publishing. - 9783319762128 ; , s. 101-106
  • Konferensbidrag (refereegranskat)abstract
    • Improving safer transport includes individual and collective behavioural aspects and their interaction. A system that can monitor and evaluate the human cognitive and physical capacities based on human factor measurement is often beneficial to improve safety in driving condition. However, analysis and evaluation of human factor measurement i.e. Demographics, Behavioural and Physiological in real-time is challenging. This paper presents a methodology for cloud-based data analysis, categorization and metrics correlation in real-time through a H2020 project called SimuSafe. Initial implementation of this methodology shows a step-by-step approach which can handle huge amount of data with variation and verity in the cloud.
  •  
7.
  • Ahmed, Mobyen Uddin, 1976-, et al. (författare)
  • Quality index analysis on camera- A sed R-eak identification considering movements and light illumination
  • 2018
  • Ingår i: Studies in Health Technology and Informatics, vol 249. - : IOS Press. - 9781614998679 ; , s. 84-92
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a quality index (QI) analysis on R-peak extracted by a camera system considering movements and light illumination. Here, the proposed camera system is compared with a reference system named Shimmer PPG sensor. The study considers five test subjects with a 15 minutes measurement protocol, where the protocol consists of several conditions. The conditions are: Normal sittings, head movements i.e., up/down/left/right/forward/backword, with light on/off and with moving flash on/off. A percentage of corrected R-peaks are calculated based on time difference in milliseconds (MS) between the R-peaks extracted both from camera-based and sensor-based systems. A comparison results between normal, movements, and lighting condition is presented as individual and group wise. Furthermore, the comparison is extended considering gender and origin of the subjects. According to the results, more than 90% R-peaks are correctly identified by the camera system with ±200 MS time differences, however, it decreases with while there is no light than when it is on. At the same time, the camera system shows more 95% accuracy for European than Asian men. 
  •  
8.
  •  
9.
  • Barua, Shaibal, et al. (författare)
  • Classifying drivers' cognitive load using EEG signals
  • 2017
  • Ingår i: Studies in Health Technology and Informatics. - : IOS Press. - 0926-9630 .- 1879-8365. - 9781614997603 ; 237, s. 99-106
  • Tidskriftsartikel (refereegranskat)abstract
    • A growing traffic safety issue is the effect of cognitive loading activities on traffic safety and driving performance. To monitor drivers' mental state, understanding cognitive load is important since while driving, performing cognitively loading secondary tasks, for example talking on the phone, can affect the performance in the primary task, i.e. driving. Electroencephalography (EEG) is one of the reliable measures of cognitive load that can detect the changes in instantaneous load and effect of cognitively loading secondary task. In this driving simulator study, 1-back task is carried out while the driver performs three different simulated driving scenarios. This paper presents an EEG based approach to classify a drivers' level of cognitive load using Case-Based Reasoning (CBR). The results show that for each individual scenario as well as using data combined from the different scenarios, CBR based system achieved approximately over 70% of classification accuracy. 
  •  
10.
  • Barua, Shaibal, et al. (författare)
  • Distributed Multivariate Physiological Signal Analytics for Driver´s Mental State Monitoring
  • 2018
  • Ingår i: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Volume 225. - Cham : Springer International Publishing. - 9783319762128 ; , s. 26-33
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a distributed data analytics approach for drivers’ mental state monitoring using multivariate physiological signals. Driver’s mental states such as cognitive distraction, sleepiness, stress, etc. can be fatal contributing factors and to prevent car crashes these factors need to be understood. Here, a cloud-based approach with heterogeneous sensor sources that generates extremely large data sets of physiological signals need to be handled and analyzed in a big data scenario. In the proposed physiological big data analytics approach, for driver state monitoring, heterogeneous data coming from multiple sources i.e., multivariate physiological signals are used, processed and analyzed to aware impaired vehicle drivers. Here, in a distributed big data environment, multi-agent case-based reasoning facilitates parallel case similarity matching and handles data that are coming from single and multiple physiological signal sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy