SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Behjat Hamid) srt2:(2020-2024)"

Sökning: WFRF:(Behjat Hamid) > (2020-2024)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Miri, Maliheh, et al. (författare)
  • Brain fingerprinting using EEG graph inference
  • 2023
  • Ingår i: 31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings. - 2219-5491. - 9789464593600 ; , s. 1025-1029
  • Konferensbidrag (refereegranskat)abstract
    • Taking advantage of the human brain functional connectome as an individual's fingerprint has attracted great research in recent years. Conventionally, Pearson correlation between regional time-courses is used as a pairwise measure for each edge weight of the connectome. Building upon recent advances in graph signal processing, we propose here to estimate the graph structure as a whole by considering all time-courses at once. Using data from two publicly available datasets, we show the superior performance of such learned brain graphs over correlation-based functional connectomes in characterizing an individual.
  •  
2.
  • Miri, Maliheh, et al. (författare)
  • Spectral representation of EEG data using learned graphs with application to motor imagery decoding
  • 2024
  • Ingår i: Biomedical Signal Processing and Control. - 1746-8094. ; 87
  • Tidskriftsartikel (refereegranskat)abstract
    • Electroencephalography (EEG) data entail a complex spatiotemporal structure that reflects ongoing organization of brain activity. Characterization of the spatial patterns is an indispensable step in numerous EEG processing pipelines. We present a novel method for transforming EEG data into a spectral representation. First, we learn subject-specific graphs from each subject's EEG data. Second, by eigendecomposition of the normalized Laplacian matrix of each subject's graph, an orthonormal basis is obtained using which any given EEG map of the subject can be decomposed, providing a spectral representation of the data. We show that energy of EEG maps is strongly associated with low frequency components of the learned basis, reflecting the smooth topography of EEG maps. As a proof-of-concept for this alternative view of EEG data, we consider the task of decoding two-class motor imagery (MI) data. To this aim, the spectral representations are first mapped into a discriminative subspace for differentiating two-class data using a projection matrix obtained by the Fukunaga–Koontz transform (FKT). An SVM classifier is then trained and tested on the resulting features to differentiate MI classes. The method is benchmarked against features extracted from a subject-specific functional connectivity matrix as well as four alternative MI-decoding methods on Dataset IVa of BCI Competition III. Experimental results show the superiority of the proposed method over alternative approaches in differentiating MI classes, reflecting the added benefit of (i) decomposing EEG data using data-driven, subject-specific harmonic bases, and (ii) accounting for class-specific temporal variations in spectral profiles.
  •  
3.
  • Abramian, David, 1992-, et al. (författare)
  • Diffusion-Informed Spatial Smoothing of fMRI Data in White Matter Using Spectral Graph Filters
  • 2021
  • Ingår i: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 237
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain activation mapping using functional magnetic resonance imaging (fMRI) has been extensively studied in brain gray matter (GM), whereas in large disregarded for probing white matter (WM). This unbalanced treatment has been in part due to controversies in relation to the nature of the blood oxygenation level-dependent (BOLD) contrast in WM and its detachability. However, an accumulating body of studies has provided solid evidence of the functional significance of the BOLD signal in WM and has revealed that it exhibits anisotropic spatio-temporal correlations and structure-specific fluctuations concomitant with those of the cortical BOLD signal. In this work, we present an anisotropic spatial filtering scheme for smoothing fMRI data in WM that accounts for known spatial constraints on the BOLD signal in WM. In particular, the spatial correlation structure of the BOLD signal in WM is highly anisotropic and closely linked to local axonal structure in terms of shape and orientation, suggesting that isotropic Gaussian filters conventionally used for smoothing fMRI data are inadequate for denoising the BOLD signal in WM. The fundamental element in the proposed method is a graph-based description of WM that encodes the underlying anisotropy observed across WM, derived from diffusion-weighted MRI data. Based on this representation, and leveraging graph signal processing principles, we design subject-specific spatial filters that adapt to a subject’s unique WM structure at each position in the WM that they are applied at. We use the proposed filters to spatially smooth fMRI data in WM, as an alternative to the conventional practice of using isotropic Gaussian filters. We test the proposed filtering approach on two sets of simulated phantoms, showcasing its greater sensitivity and specificity for the detection of slender anisotropic activations, compared to that achieved with isotropic Gaussian filters. We also present WM activation mapping results on the Human Connectome Project’s 100-unrelated subject dataset, across seven functional tasks, showing that the proposed method enables the detection of streamline-like activations within axonal bundles.
  •  
4.
  • Abramian, David, 1992-, et al. (författare)
  • Improved Functional MRI Activation Mapping in White Matter Through Diffusion-Adapted Spatial Filtering
  • 2020
  • Ingår i: ISBI 2020. - : IEEE. - 1945-8452 .- 1945-7928. - 9781538693308
  • Konferensbidrag (refereegranskat)abstract
    • Brain activation mapping using functional MRI (fMRI) based on blood oxygenation level-dependent (BOLD) contrast has been conventionally focused on probing gray matter, the BOLD contrast in white matter having been generally disregarded. Recent results have provided evidence of the functional significance of the white matter BOLD signal, showing at the same time that its correlation structure is highly anisotropic, and related to the diffusion tensor in shape and orientation. This evidence suggests that conventional isotropic Gaussian filters are inadequate for denoising white matter fMRI data, since they are incapable of adapting to the complex anisotropic domain of white matter axonal connections. In this paper we explore a graph-based description of the white matter developed from diffusion MRI data, which is capable of encoding the anisotropy of the domain. Based on this representation we design localized spatial filters that adapt to white matter structure by leveraging graph signal processing principles. The performance of the proposed filtering technique is evaluated on semi-synthetic data, where it shows potential for greater sensitivity and specificity in white matter activation mapping, compared to isotropic filtering.
  •  
5.
  • Abramian, David, 1992- (författare)
  • Modern multimodal methods in brain MRI
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetic resonance imaging (MRI) is one of the pillars of modern medical imaging, providing a non-invasive means to generate 3D images of the body with high soft-tissue contrast. Furthermore, the possibilities afforded by the design of MRI sequences enable the signal to be sensitized to a multitude of physiological tissue properties, resulting in a wide variety of distinct MRI modalities for clinical and research use. This thesis presents a number of advanced brain MRI applications, which fulfill, to differing extents, two complementary aims. On the one hand, they explore the benefits of a multimodal approach to MRI, combining structural, functional and diffusion MRI, in a variety of contexts. On the other, they emphasize the use of advanced mathematical and computational tools in the analysis of MRI data, such as deep learning, Bayesian statistics, and graph signal processing. Paper I introduces an anatomically-adapted extension to previous work in Bayesian spatial priors for functional MRI data, where anatomical information is introduced from a T1-weighted image to compensate for the low anatomical contrast of functional MRI data. It has been observed that the spatial correlation structure of the BOLD signal in brain white matter follows the orientation of the underlying axonal fibers. Paper II argues about the implications of this fact on the ideal shape of spatial filters for the analysis of white matter functional MRI data. By using axonal orientation information extracted from diffusion MRI, and leveraging the possibilities afforded by graph signal processing, a graph-based description of the white matter structure is introduced, which, in turn, enables the definition of spatial filters whose shape is adapted to the underlying axonal structure, and demonstrates the increased detection power resulting from their use. One of the main clinical applications of functional MRI is functional localization of the eloquent areas of the brain prior to brain surgery. This practice is widespread for various invasive surgeries, but is less common for stereotactic radiosurgery (SRS), a non-invasive surgical procedure wherein tissue is ablated by concentrating several beams of high-energy radiation. Paper III describes an analysis and processing pipeline for functional MRI data that enables its use for functional localization and delineation of organs-at-risk for Elekta GammaKnife SRS procedures. Paper IV presents a deep learning model for super-resolution of diffusion MRI fiber ODFs, which outperforms standard interpolation methods in estimating local axonal fiber orientations in white matter. Finally, Paper V demonstrates that some popular methods for anonymizing facial data in structural MRI volumes can be partially reversed by applying generative deep learning models, highlighting one way in which the enormous power of deep learning models can potentially be put to use for harmful purposes. 
  •  
6.
  • Behjat, Hamid, et al. (författare)
  • Characterization of Spatial Dynamics of Fmri Data in White Matter Using Diffusion-Informed White Matter Harmonics
  • 2021
  • Ingår i: 2021 IEEE 18th International Symposium On Biomedical Imaging (ISBI). - : Institute of Electrical and Electronics Engineers (IEEE). - 1945-8452 .- 1945-7928. - 9781665412469 - 9781665429474
  • Konferensbidrag (refereegranskat)abstract
    • In this work, we leverage the Laplacian eigenbasis of voxelwise white matter (WM) graphs derived from diffusionweighted MRI data, dubbed WM harmonics, to characterize the spatial structure of WM fMRI data. Our motivation for such a characterization is based on studies that show WM fMRI data exhibit a spatial correlational anisotropy that coincides with underlying fiber patterns. By quantifying the energy content of WM fMRI data associated with subsets of WM harmonics across multiple spectral bands, we show that the data exhibits notable subtle spatial modulations under functional load that are not manifested during rest. WM harmonics provide a novel means to study the spatial dynamics of WM fMRI data, in such way that the analysis is informed by the underlying anatomical structure.
  •  
7.
  • Behjat, Hamid, et al. (författare)
  • Spectral Characterization of Functional MRI Data on Voxel-Resolution Cortical Graphs
  • 2020
  • Ingår i: ISBI 2020 - 2020 IEEE International Symposium on Biomedical Imaging. - 1945-7928 .- 1945-8452. - 9781538693308 ; 2020-April, s. 558-562
  • Konferensbidrag (refereegranskat)abstract
    • The human cortical layer exhibits a convoluted morphology that is unique to each individual. Conventional volumetric fMRI processing schemes take for granted the rich information provided by the underlying anatomy. We present a method to study fMRI data on subject-specific cerebral hemisphere cortex (CHC) graphs, which encode the cortical morphology at the resolution of voxels in 3-D. Using graph signal processing principles, we study spectral energy metrics associated to fMRI data, on 100 subjects from the Human Connectome Project database, across seven tasks. Experimental results signify the strength of CHC graphs' Laplacian eigenvector bases in capturing subtle spatial patterns specific to different functional loads as well as to sets of experimental conditions within each task.
  •  
8.
  • Behjat, Hamid, et al. (författare)
  • Voxel-Wise Brain Graphs From Diffusion MRI: Intrinsic Eigenspace Dimensionality and Application to Functional MRI
  • 2023
  • Ingår i: IEEE Open Journal of Engineering in Medicine and Biology. - : Institute of Electrical and Electronics Engineers (IEEE). - 2644-1276. ; , s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas,with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs’ Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.
  •  
9.
  • Ferritto, Carlo, et al. (författare)
  • Brain Fingerprinting Using FMRI Spectral Signatures On High-Resolution Cortical Graphs
  • 2023
  • Ingår i: ICASSPW 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, Proceedings. - 9798350302615
  • Konferensbidrag (refereegranskat)abstract
    • Resting-state fMRI has proven to entail subject-specific signatures that can serve as a fingerprint to identify individuals. Conventional methods are based on building a connectivity matrix based on correlation between the average time course of pairs of brain regions. This approach, first, disregards the exquisite spatial detail manifested by fMRI due to working on average regional activities, second, cannot disentangle correlations associated to cognitive activity and underlying noise, and third, does not account for cortical morphology that spatially constraints function. Here we propose a method to address these shortcomings via leveraging principles from graph signal processing. We build high spatial resolution cortical graphs that encode each individual's cortical morphology and treat region-specific, whole-hemisphere fMRI maps as signals that reside on the graphs. fMRI graph signals are then decomposed using systems of graph spectral kernels to extract structure-informed functional signatures, which are in turn used for fingerprinting. Results on 100 subjects showed the overall superior subject differentiation power of the proposed signatures over the conventional method. Moreover, placement of the signatures within canonical functional brain networks revealed the greater contribution of high-level cognitive networks in subject identification.
  •  
10.
  • Langensee, Lara, et al. (författare)
  • T1w/T2w Ratio and Cognition in 9-to-11-Year-Old Children
  • 2022
  • Ingår i: Brain Sciences. - : MDPI AG. - 2076-3425. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Childhood is a period of extensive cortical and neural development. Among other things, axons in the brain gradually become more myelinated, promoting the propagation of electrical sig-nals between different parts of the brain, which in turn may facilitate skill development. Myelin is difficult to assess in vivo, and measurement techniques are only just beginning to make their way into standard imaging protocols in human cognitive neuroscience. An approach that has been proposed as an indirect measure of cortical myelin is the T1w/T2w ratio, a contrast that is based on the intensities of two standard structural magnetic resonance images. Although not initially intended as such, researchers have recently started to use the T1w/T2w contrast for between-subject comparisons of cortical data with various behavioral and cognitive indices. As a complement to these earlier findings, we computed individual cortical T1w/T2w maps using data from the Adolescent Brain Cognitive Development study (N = 960; 449 females; aged 8.9 to 11.0 years) and related the T1w/T2w maps to indices of cognitive ability; in contrast to previous work, we did not find significant relationships between T1w/T2w values and cognitive performance after correcting for multiple testing. These findings reinforce existent skepticism about the applicability of T1w/T2w ratio for inter-indi-vidual comparisons.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy