SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beijnen J. H.) srt2:(2020-2023)"

Sökning: WFRF:(Beijnen J. H.) > (2020-2023)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Siebinga, H, et al. (författare)
  • A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors
  • 2021
  • Ingår i: EJNMMI Research. - : Springer Nature. - 2191-219X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs. The aim of this study was to develop a PBPK model to describe organ distribution of 68Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs).METHODS: Clinical 68Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30-60 min) after intravenous bolus injection of 68Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification.RESULTS: 68Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05-16.9 µg) labeled with 92.7 MBq (range 43.4-129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts.CONCLUSIONS: To conclude, biodistribution of 68Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts.
  •  
2.
  • Janssen, J. M., et al. (författare)
  • Semi-physiological Enriched Population Pharmacokinetic Modelling to Predict the Effects of Pregnancy on the Pharmacokinetics of Cytotoxic Drugs
  • 2023
  • Ingår i: Clinical Pharmacokinetics. - : Springer Nature. - 0312-5963 .- 1179-1926. ; 62:8, s. 1157-1167
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objective As a result of changes in physiology during pregnancy, the pharmacokinetics (PK) of drugs can be altered. It is unclear whether under- or overexposure occurs in pregnant cancer patients and thus also whether adjustments in dosing regimens are required. Given the severity of the malignant disease and the potentially high impact on both the mother and child, there is a high unmet medical need for adequate and tolerable treatment of this patient population. We aimed to develop and evaluate a semi-physiological enriched model that incorporates physiological changes during pregnancy into available population PK models developed from non-pregnant patient data.Methods Gestational changes in plasma protein levels, renal function, hepatic function, plasma volume, extracellular water and total body water were implemented in existing empirical PK models for docetaxel, paclitaxel, epirubicin and doxorubicin. These models were used to predict PK profiles for pregnant patients, which were compared with observed data obtained from pregnant patients.Results The observed PK profiles were well described by the model. For docetaxel, paclitaxel and doxorubicin, an overprediction of the lower concentrations was observed, most likely as a result of a lack of data on the gestational changes in metabolizing enzymes. For paclitaxel, epirubicin and doxorubicin, the semi-physiological enriched model performed better in predicting PK in pregnant patients compared with a model that was not adjusted for pregnancy-induced changes.Conclusion By incorporating gestational changes into existing population pharmacokinetic models, it is possible to adequately predict plasma concentrations of drugs in pregnant patients which may inform dose adjustments in this population.
  •  
3.
  • Janssen, Julie M, et al. (författare)
  • A Semi-Mechanistic Population Pharmacokinetic/Pharmacodynamic Model of Bortezomib in Pediatric Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia.
  • 2020
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 59:2, s. 207-216
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: The pharmacokinetics (PK) of the 20S proteasome inhibitor bortezomib are characterized by a large volume of distribution and a rapid decline in plasma concentrations within the first hour after administration. An increase in exposure was observed in the second week of treatment, which has previously been explained by extensive binding of bortezomib to proteasome in erythrocytes and peripheral tissues. We characterized the nonlinear population PK and pharmacodynamics (PD) of bortezomib in children with acute lymphoblastic leukemia.METHODS: Overall, 323 samples from 28 patients were available from a pediatric clinical study investigating bortezomib at an intravenous dose of 1.3 mg/m2 twice weekly (Dutch Trial Registry number 1881/ITCC021). A semi-physiological PK model for bortezomib was first developed; the PK were linked to the decrease in 20S proteasome activity in the final PK/PD model.RESULTS: The plasma PK data were adequately described using a two-compartment model with linear elimination. Increased concentrations were observed in week 2 compared with week 1, which was described using a Langmuir binding model. The decrease in 20S proteasome activity was best described by a direct effect model with a sigmoidal maximal inhibitory effect, representing the relationship between plasma concentrations and effect. The maximal inhibitory effect was 0.696 pmol AMC/s/mg protein (95% confidence interval 0.664-0.728) after administration.CONCLUSION: The semi-physiological model adequately described the nonlinear PK and PD of bortezomib in plasma. This model can be used to further optimize dosing of bortezomib.
  •  
4.
  • Siebinga, Hinke, et al. (författare)
  • A physiologically based pharmacokinetic model for [Ga-68]Ga-(HA-)DOTATATE to predict whole-body distribution and tumor sink effects in GEP-NET patients
  • 2023
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Little is known about parameters that have a relevant impact on (dis)similarities in biodistribution between various Ga-68-labeled somatostatin analogues. Additionally, the effect of tumor burden on organ uptake remains unclear. Therefore, the aim of this study was to describe and compare organ and tumor distribution of [Ga-68]Ga-DOTATATE and [Ga-68]Ga-HA-DOTATATE using a physiologically based pharmacokinetic (PBPK) model and to identify factors that might cause biodistribution and tumor uptake differences between both peptides. In addition, the effect of tumor burden on peptide biodistribution in gastroenteropancreatic (GEP) neuroendocrine tumor (NET) patients was assessed.Methods: A PBPK model was developed for [Ga-68]Ga-(HA-)DOTATATE in GEP-NET patients. Three tumor compartments were added, representing primary tumor, liver metastases and other metastases. Furthermore, reactions describing receptor binding, internalization and recycling, renal clearance and intracellular degradation were added to the model. Scan data from GEP-NET patients were used for evaluation of model predictions. Simulations with increasing tumor volumes were performed to assess the tumor sink effect.Results: Data of 39 and 59 patients receiving [Ga-68]Ga-DOTATATE and [Ga-68]Ga-HA-DOTATATE, respectively, were included. Evaluations showed that the model adequately described image-based patient data and that different receptor affinities caused organ uptake dissimilarities between both peptides. Sensitivity analysis indicated that tumor blood flow and blood volume impacted tumor distribution most. Tumor sink predictions showed a decrease in spleen uptake with increasing tumor volume, which seemed clinically relevant for patients with total tumor volumes higher than similar to 550 mL.Conclusion: The developed PBPK model adequately predicted tumor and organ uptake for this GEP-NET population. Relevant organ uptake differences between [Ga-68]Ga-DOTATATE and [Ga-68]Ga-HA-DOTATATE were caused by different affinity profiles, while tumor uptake was mainly affected by tumor blood flow and blood volume. Furthermore, tumor sink predictions showed that for the majority of patients a tumor sink effect is not expected to be clinically relevant.
  •  
5.
  • Janssen, Julie M, et al. (författare)
  • Population Pharmacokinetics of Docetaxel, Paclitaxel, Doxorubicin and Epirubicin in Pregnant Women with Cancer : A Study from the International Network of Cancer, Infertility and Pregnancy (INCIP).
  • 2021
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 60:6, s. 775-784
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Based on reassuring short-term foetal and maternal safety data, there is an increasing trend to administer chemotherapy during the second and third trimesters of pregnancy. The pharmacokinetics (PK) of drugs might change as a result of several physiological changes that occur during pregnancy, potentially affecting the efficacy and safety of chemotherapy.OBJECTIVE: With this analysis, we aimed to quantitatively describe the changes in the PK of docetaxel, paclitaxel, doxorubicin and epirubicin in pregnant women compared with non-pregnant women.METHODS: PK data from 9, 20, 22 and 16 pregnant cancer patients from the International Network of Cancer, Infertility and Pregnancy (INCIP) were available for docetaxel, paclitaxel, doxorubicin and epirubicin, respectively. These samples were combined with available PK data from non-pregnant patients. Empirical non-linear mixed-effects models were developed, evaluating fixed pregnancy effects and gestational age as covariates.RESULTS: Overall, 82, 189, 271, and 227 plasma samples were collected from pregnant patients treated with docetaxel, paclitaxel, doxorubicin and epirubicin, respectively. The plasma PK data were adequately described by the respective models for all cytotoxic drugs. Typical increases in central and peripheral volumes of distribution of pregnant women were identified for docetaxel, paclitaxel, doxorubicin and epirubicin. Additionally, docetaxel, doxorubicin and paclitaxel clearance were increased in pregnant patients, resulting in lower exposure in pregnant women compared with non-pregnant patients.CONCLUSION: Given the interpatient variability, the identified pregnancy-induced changes in PK do not directly warrant dose adjustments for the studied drugs. Nevertheless, these results underscore the need to investigate the efficacy of chemotherapy, when administered during pregnancy.
  •  
6.
  • Siebinga, Hinke, et al. (författare)
  • Predicting [177Lu]Lu-HA-DOTATATE kidney and tumor accumulation based on [68Ga]Ga-HA-DOTATATE diagnostic imaging using semi-physiological population pharmacokinetic modeling
  • 2023
  • Ingår i: EJNMMI Physics. - : Springer. - 2197-7364. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundPrediction of [177Lu]Lu-HA-DOTATATE kidney and tumor uptake based on diagnostic [68Ga]Ga-HA-DOTATATE imaging would be a crucial step for precision dosing of [177Lu]Lu-HA-DOTATATE. In this study, the population pharmacokinetic (PK) differences between [177Lu]Lu-HA-DOTATATE and [68Ga]Ga-HA-DOTATATE were assessed and subsequently [177Lu]Lu-HA-DOTATATE was predicted based on [68Ga]Ga-HA-DOTATATE imaging.MethodsA semi-physiological nonlinear mixed-effects model was developed for [68Ga]Ga-HA-DOTATATE and [177Lu]Lu-HA-DOTATATE, including six compartments (representing blood, spleen, kidney, tumor lesions, other somatostatin receptor expressing organs and a lumped rest compartment). Model parameters were fixed based on a previously developed physiologically based pharmacokinetic model for [68Ga]Ga-HA-DOTATATE. For [177Lu]Lu-HA-DOTATATE, PK parameters were based on literature values or estimated based on scan data (four time points post-injection) from nine patients. Finally, individual [177Lu]Lu-HA-DOTATATE uptake into tumors and kidneys was predicted based on individual [68Ga]Ga-HA-DOTATATE scan data using Bayesian estimates. Predictions were evaluated compared to observed data using a relative prediction error (RPE) for both area under the curve (AUC) and absorbed dose. Lastly, to assess the predictive value of diagnostic imaging to predict therapeutic exposure, individual prediction RPEs (using Bayesian estimation) were compared to those from population predictions (using the population model).ResultsPopulation uptake rate parameters for spleen, kidney and tumors differed by a 0.29-fold (15% relative standard error (RSE)), 0.49-fold (15% RSE) and 1.43-fold (14% RSE), respectively, for [177Lu]Lu-HA-DOTATATE compared to [68Ga]Ga-HA-DOTATATE. Model predictions adequately described observed data in kidney and tumors for both peptides (based on visual inspection of goodness-of-fit plots). Individual predictions of tumor uptake were better (RPE AUC –40 to 28%) compared to kidney predictions (RPE AUC –53 to 41%). Absorbed dose predictions were less predictive for both tumor and kidneys (RPE tumor and kidney –51 to 44% and –58 to 82%, respectively). For most patients, [177Lu]Lu-HA-DOTATATE tumor accumulation predictions based on individual PK parameters estimated from diagnostic imaging outperformed predictions based on population parameters.ConclusionOur semi-physiological PK model indicated clear differences in PK parameters for [68Ga]Ga-HA-DOTATATE and [177Lu]Lu-HA-DOTATATE. Diagnostic images provided additional information to individually predict [177Lu]Lu-HA-DOTATATE tumor uptake compared to using a population approach. In addition, individual predictions indicated that many aspects, apart from PK differences, play a part in predicting [177Lu]Lu-HA-DOTATATE distribution.
  •  
7.
  • Damoiseaux, David, et al. (författare)
  • Physiologically‐based pharmacokinetic model to predict doxorubicin and paclitaxel exposure in infants through breast milk
  • 2023
  • Ingår i: CPT. - : John Wiley & Sons. - 2163-8306. ; 12:12, s. 1931-1944
  • Tidskriftsartikel (refereegranskat)abstract
    • Limited information is available concerning infant exposure and safety when breastfed by mothers receiving chemotherapy. Whereas defining distribution to breast milk is important to infer drug exposure, infant pharmacokinetics also determine to what extent the infant will be exposed to potential toxic effects. We aimed to assess the impact of chemotherapy containing breast milk on infants by predicting systemic and local (intestinal) exposure of paclitaxel and doxorubicin in infants through breast milk using a physiologically-based pharmacokinetic (PBPK) approach. Whole-body PBPK models of i.v. paclitaxel and doxorubicin were extended from the literature, with an oral absorption component to enable predictions in infants receiving paclitaxel or doxorubicin-containing breast milk. For safety considerations, worst-case scenarios were explored. Finally, paclitaxel and doxorubicin exposures in plasma and intestinal tissue of infants following feeding of breast milk from paclitaxel- or doxorubicin-treated mothers were simulated and breast milk discarding strategies were evaluated. The upper 95th percentile of the predicted peak concentrations in peripheral venous blood were 3.48 and 0.74 nM (0.4%–1.7% and 0.1%–1.8% of on-treatment) for paclitaxel and doxorubicin, respectively. Intestinal exposure reached peak concentrations of 1.0 and 140 μM for paclitaxel and doxorubicin, respectively. Discarding breast milk for the first 3 days after maternal chemotherapy administration reduced systemic and tissue exposures even further, to over 90% and 80% for paclitaxel and doxorubicin, respectively. PBPK simulations of chemotherapy exposure in infants after breastfeeding with chemotherapy containing breast milk suggest that particularly local gastrointestinal adverse events should be monitored, whereas systemic adverse events are not expected.
  •  
8.
  • Janssen, Julie M, et al. (författare)
  • Population Pharmacokinetics of Intracellular 5-Fluorouridine 5'-Triphosphate and its Relationship with Hand-and-Foot Syndrome in Patients Treated with Capecitabine.
  • 2021
  • Ingår i: AAPS Journal. - : Springer Nature. - 1550-7416. ; 23:1, s. 23-
  • Tidskriftsartikel (refereegranskat)abstract
    • Capecitabine is an oral pro-drug of 5-fluorouracil. Patients with solid tumours who are treated with capecitabine may develop hand-and-foot syndrome (HFS) as side effect. This might be a result of accumulation of intracellular metabolites. We characterised the pharmacokinetics (PK) of 5-fluorouridine 5'-triphosphate (FUTP) in peripheral blood mononuclear cells (PBMCs) and assessed the relationship between exposure to capecitabine or its metabolites and the development of HFS. Plasma and intracellular capecitabine PK data and ordered categorical HFS data was available. A previously developed model describing the PK of capecitabine and metabolites was extended to describe the intracellular FUTP concentrations. Subsequently, a continuous-time Markov model was developed to describe the development of HFS during treatment with capecitabine. The influences of capecitabine and metabolite concentrations on the development of HFS were evaluated. The PK of intracellular FUTP was described by an one-compartment model with first-order elimination (ke,FUTP was 0.028 h-1 (95% confidence interval 0.022-0.039)) where the FUTP influx rate was proportional to the 5-FU plasma concentrations. The predicted individual intracellular FUTP concentration was identified as a significant predictor for the development and severity of HFS. Simulations demonstrated a clear exposure-response relationship. The intracellular FUTP concentrations were successfully described and a significant relationship between these intracellular concentrations and the development and severity of HFS was identified. This model can be used to simulate future dosing regimens and thereby optimise treatment with capecitabine.
  •  
9.
  • Van der Heijden, Lisa T., et al. (författare)
  • Development of a Therapeutic Drug Monitoring Strategy for the Optimization of Vincristine Treatment in Pediatric Oncology Populations in Africa
  • 2023
  • Ingår i: Therapeutic Drug Monitoring. - : Ovid Technologies (Wolters Kluwer Health). - 0163-4356 .- 1536-3694. ; 45:3, s. 354-363
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Recent studies have reported ethnic differences in vincristine exposure and outcomes such as toxicity. This resulted in the hypothesis of subtherapeutic dosing in African children. To optimize individual treatment, a strategy to identify subtherapeutic exposure using therapeutic drug monitoring is essential. The aim of the current study was to develop a strategy for therapeutic drug monitoring of vincristine in African children to meet the following criteria: (1) identify patients with low vincristine exposure with sufficient sensitivity (>70%), (2) determine vincristine exposure with a limited sampling strategy design of 3 samples, and (3) allow all samples to be collected within 4 hours after administration.Methods:An in silico simulation study was performed using a previously described population pharmacokinetic model and real-life demographic dataset of Kenyan and Malawian pediatric oncology patients. Two different therapeutic drug monitoring strategies were evaluated: (1) Bayesian approach and (2) pharmacometric nomogram. The sampling design was optimized using the constraints described above. Sensitivity analysis was performed to investigate the influence of missing samples, erroneous sampling times, and different boundaries on the nomogram weight bands.Results:With the Bayesian approach, 43.3% of the estimated individual exposure values had a prediction error of & GE;20% owing to extremely high shrinkage. The Bayesian approach did not improve with alternative sampling designs within sampling constraints. However, the pharmacometric nomogram could identify patients with low vincristine exposure with a sensitivity, specificity, and accuracy of 75.1%, 76.4%, and 75.9%, respectively. The pharmacometric nomogram performed similarly for different weight bands.Conclusions:The pharmacometric nomogram was able to identify patients with low vincristine exposure with high sensitivity, with 3 blood samples collected at 1, 1.5, and 4 hours after administration. Missing samples should be avoided, and the 3 scheduled samples should be collected within 15, 5, and 15 minutes of 1, 1.5, and 4 hours after administration, respectively.
  •  
10.
  • van Der Heijden, L. T., et al. (författare)
  • The use of microtracers in food-effect trials : An alternative study design for toxic drugs with long half-lives exemplified by the case for alectinib
  • 2023
  • Ingår i: Clinical and Translational Science. - : John Wiley & Sons. - 1752-8054 .- 1752-8062. ; 16:12, s. 2557-2564
  • Tidskriftsartikel (refereegranskat)abstract
    • The traditional design of food-effect studies has a high patient burden for toxic drugs with long half-lives (e.g., anticancer agents). Microtracers could be used to assess food-effect in patients without influencing their ongoing treatment. The feasibility of a microtracer food-effect study during steady-state of the therapeutic drug was investigated in an in silico simulation study with alectinib as an example for a relative toxic drug with a long half-life. Microtracer pharmacokinetics were simulated based on a previously published population pharmacokinetic model and used for estimation of a model with and a model without food as a covariate on oral bioavailability of alectinib (assuming a 40% food-effect). Power was defined as the fraction of clinical trials where a significant (p < 0.01) food-effect was identified. The proposed study design of 10 patients on steady-state treatment, 10 blood samples collected within 24 h after administration and an assumed food-effect of 40% had a power of 99.9%. The mean estimated food-effect was 39.8% (80% confidence interval: 31.0%-48.6%). The feasibility of microtracer food-effect studies was demonstrated. The design of the microtracer food-effect study allowed estimation of the food-effect with minimal influence on therapeutic treatment and reducing patient burden compared to the traditional study design for toxic drugs with long half-lives.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy