SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bellman Jakob) srt2:(2019)"

Sökning: WFRF:(Bellman Jakob) > (2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anesten, Fredrik, et al. (författare)
  • Glucagon-Like Peptide-1-, but not Growth and Differentiation Factor 15-, Receptor Activation Increases the Number of Interleukin-6-Expressing Cells in the External Lateral Parabrachial Nucleus
  • 2019
  • Ingår i: Neuroendocrinology. - : S. Karger AG. - 0028-3835 .- 1423-0194. ; 109:4, s. 310-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-6 in the hypothalamus and hindbrain is an important downstream mediator of suppression of body weight and food intake by glucagon-like peptide-1 (GLP-1) receptor stimulation. CNS GLP-1 is produced almost exclusively in prepro-glucagon neurons in the nucleus of the solitary tract. These neurons innervate energy balance-regulating areas, such as the external lateral parabrachial nucleus (PBNel); essential for induction of anorexia. Using a validated novel IL-6-reporter mouse strain, we investigated the interactions in PBNel between GLP-1, IL-6, and calcitonin gene-related peptide (CGRP, a well-known mediator of anorexia). We show that PBNel GLP-1R-containing cells highly (to about 80%) overlap with IL-6-containing cells on both protein and mRNA level. Intraperitoneal administration of a GLP-1 analogue exendin-4 to mice increased the proportion of IL-6-containing cells in PBNel 3-fold, while there was no effect in the rest of the lateral parabrachial nucleus. In contrast, injections of an anorexigenic peptide growth and differentiation factor 15 (GDF15) markedly increased the proportion of CGRP-containing cells, while IL-6-containing cells were not affected. In summary, GLP-1R are found on IL-6-producing cells in PBNel, and GLP-1R stimulation leads to an increase in the proportion of cells with IL-6-reporter fluorescence, supporting IL-6 mediation of GLP-1 effects on energy balance.
  •  
2.
  • Palsdottir, Vilborg, 1979, et al. (författare)
  • Interactions Between the Gravitostat and the Fibroblast Growth Factor System for the Regulation of Body Weight
  • 2019
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 160:5, s. 1057-1064
  • Tidskriftsartikel (refereegranskat)abstract
    • Both fibroblast growth factors (FGFs), by binding to FGF receptors (FGFRs), and activation of the gravitostat, by artificial loading, decrease the body weight (BW). Previous studies demonstrate that both the FGF system and loading have the capacity to regulate BW independently of leptin. The aim of the current study was to determine the possible interactions between the effect of increased loading and the FGF system for the regulation of BW. We observed that the BW-reducing effect of increased loading was abolished in mice treated with a monoclonal antibody directed against FGFR1c, suggesting interactions between the two systems. As serum levels of endocrine FGF21 and hepatic FGF21 mRNA were increased in the loaded mice compared with the control mice, we first evaluated the loading response in FGF21 over expressing mice with constant high FGF21 levels. Leptin treatment, but not increased loading, decreased the BW in the FGF21-overexpressing mice, demonstrating that specifically the loading effect is attenuated in the presence of high activity in the FGF system. However, as FGF21 knockout mice displayed a normal loading response on BW, FGF21 is neither mediating nor essential for the loading response. In conclusion, the BW-reducing effect of increased loading but not of leptin treatment is blocked by high activity in the FGF system. We propose that both the gravitostat and the FGF system regulate BW independently of leptin and that pharmacologically enhanced activity in the FGF system reduces the sensitivity of the grayitostat.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy