SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Belloche A.) srt2:(2010-2014)"

Search: WFRF:(Belloche A.) > (2010-2014)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Comito, C., et al. (author)
  • Herschel observations of deuterated water towards Sgr B2(M)
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L38-
  • Journal article (peer-reviewed)abstract
    • Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes - grain surfaces versus energetic process in the gas phase, e. g. in shocks. The HIFI observations of multiple transitions of HDO in Sgr B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance (2.5 x 10(-11)) in the outer envelope at temperatures below 100 K through a medium abundance (1.5 x 10(-9)) in the inner envelope/outer core at temperatures between 100 and 200 K, and finally a high abundance (3.5 x 10(-9)) at temperatures above 200 K in the hot core.
  •  
3.
  • Hoare, M. G., et al. (author)
  • The cradle of life and the SKA
  • 2014
  • In: Proceedings of Science. - 1824-8039.
  • Conference paper (peer-reviewed)abstract
    • We provide an overview of the exciting capabilities of the SKA in the Cradle of Life theme. With the deployment of the high frequency band 5 receivers, the phase 1 of the SKA can conduct headline science in the study of the earliest stages of grain growth in proto-planetary disks. SKA1-MID can map the 2 cm continuum emission at a resolution of 4 au in the nearest systems and therefore begin to probe the distribuion of cm-sized particles across the snow line. This frequency range will also enable deep searches for pre-biotic molecules such as amino acids from pre-stellar cores to the cold, outer regions of proto-planetary disks where cometary material forms. The lowest frequency capabilities of SKA1 can be used to examine the magnetic fields of exo-planets via their auroral radio emission. This gives unique insight into their interiors and could potentially detect exo-moons. Across the full frequency range, the SKA1 will also carry out systematic, volume-limited searches of exo-planet systems for signals from technologically advanced civilizations. The sensitivity of SKA1 means that these only need to be at the level of typical airport radar signals in the nearest systems. Hence, the SKA1 can conduct high impact science from the first steps on the road to planets and life, through areas affecting the habitability of planets, and ultimately, to whether we are alone in the Galaxy. These inspirational themes will greatly help in the effort to bring SKA1 science to a wide audience and to ensure the progression to the full SKA.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view