SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bellotti G.) srt2:(2020-2024)"

Sökning: WFRF:(Bellotti G.) > (2020-2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Panico, B., et al. (författare)
  • Cosmic Rays Investigation by the PAMELA experiment
  • 2020
  • Ingår i: Journal of Physics. - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) is a satellite-borne experiment. It was launched on June 15th 2006 from the Baikonur space centre on board the Russian Resurs-DK1 satellite. For about 10 years PAMELA took data, giving a fundamental contribution to the cosmic ray physics. It made high-precision measurements of the charged component of the cosmic radiation challenging the standard model of the mechanisms of production, acceleration and propagation of cosmic rays in the galaxy and in the heliosphere. PAMELA gave results on different topics on a very wide range of energy. Moreover, the long PAMELA life gives the possibility to study the variation of the proton, electron and positron spectra during the last solar minimum. The time dependence of the cosmic-ray proton and helium nuclei from the solar minimum through the following period of solar maximum activity is currently being studied. Low energy particle spectra were accurately measured also for various solar events that occurred during the PAMELA mission. In this paper a review of main PAMELA results will be reported.
  •  
2.
  • Panico, B., et al. (författare)
  • Time dependence of the proton and helium flux measured by PAMELA
  • 2020
  • Ingår i: Journal of Physics. - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The energy spectra of galactic cosmic rays carry fundamental information regarding their origin and propagation, but, near Earth, cosmic rays are significantly affected by the solar magnetic field which changes over time. The time dependence of proton and electron spectra were measured from July 2006 to December 2009 by PAMELA experiment, that is a ballooon-borne experiment collecting data since 15 June 2006. These studies allowed to obtain a more complete description of the cosmic radiation, providing fundamental information about the transport and modulation of cosmic rays inside the heliosphere. The study of the time dependence of the cosmic-ray protons and helium nuclei from the unusual 23rd solar minimum through the following period of solar maximum activity is presented.
  •  
3.
  • Bellotti, S., et al. (författare)
  • Monitoring the large-scale magnetic field of AD Leo with SPIRou, ESPaDOnS, and Narval : Towards a magnetic polarity reversal?
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 676
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: One clear manifestation of dynamo action on the Sun is the 22-yr magnetic cycle, exhibiting a polarity reversal and a periodic conversion between poloidal and toroidal fields. For M dwarfs, several authors claim evidence of activity cycles from photometry and analyses of spectroscopic indices, but no clear polarity reversal has been identified from spectropolarimetric observations. These stars are excellent laboratories to investigate dynamo-powered magnetic fields under different stellar interior conditions, that is partly or fully convective.Aims: Our aim is to monitor the evolution of the large-scale field of AD Leo, which has shown hints of a secular evolution from past dedicated spectropolarimetric campaigns. This is of central interest to inform distinct dynamo theories, contextualise the evolution of the solar magnetic field, and explain the variety of magnetic field geometries observed in the past.Methods: We analysed near-infrared spectropolarimetric observations of the active M dwarf AD Leo taken with SPIRou between 2019 and 2020 and archival optical data collected with ESPaDOnS and Narval between 2006 and 2019. We searched for long-term variability in the longitudinal field, the width of unpolarised Stokes profiles, the unsigned magnetic flux derived from Zeeman broadening, and the geometry of the large-scale magnetic field using both Zeeman-Doppler imaging and principal component analysis.Results: We found evidence of a long-term evolution of the magnetic field, featuring a decrease in axisymmetry (from 99% to 60%). This is accompanied by a weakening of the longitudinal field (-300 to -50 G) and a correlated increase in the unsigned magnetic flux (2.8-3.6 kG). Likewise, the width of the mean profile computed with selected near-infrared lines manifests a long-term evolution corresponding to field strength changes over the full time series, but does not exhibit modulation with the stellar rotation of AD Leo in individual epochs.Conclusions: The large-scale magnetic field of AD Leo manifested first hints of a polarity reversal in late 2020 in the form of a substantially increased dipole obliquity, while the topology remained predominantly poloidal and dipolar for 14 yr. This suggests that low-mass M dwarfs with a dipole-dominated magnetic field can undergo magnetic cycles.
  •  
4.
  • Tsvetkova, S., et al. (författare)
  • The large-scale magnetic field of the M dwarf double-line spectroscopic binary FK Aqr*
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. This work is part of the BinaMIcS project, the aim of which is to understand the interaction between binarity and magnetism in close binary systems. All the studied spectroscopic binaries targeted by the BinaMIcS project encompass hot massive and intermediate-mass stars on the main sequence, as well as cool stars over a wide range of evolutionary stages. Aims. The present paper focuses on the binary system FK Aqr, which is composed of two early M dwarfs. Both stars are already known to be magnetically active based on their light curves and detected flare activity. In addition, the two components have large convective envelopes with masses just above the fully convective limit, making the system an ideal target for studying effect of binarity on stellar dynamos. Methods. We use spectropolarimetric observations obtained with ESPaDOnS at CFHT in September 2014. Mean Stokes I and V line profiles are extracted using the least-squares deconvolution (LSD) method. The radial velocities of the two components are measured from the LSD Stokes I profiles and are combined with interferometric measurements in order to constrain the orbital parameters of the system. The longitudinal magnetic fields B-l and chromospheric activity indicators are measured from the LSD mean line profiles. The rotational modulation of the Stokes V profiles is used to reconstruct the surface magnetic field structures of both stars via the Zeeman Doppler imaging (ZDI) inversion technique. Results. Maps of the surface magnetic field structures of both components of FK Aqr are presented for the first time. Our study shows that both components host similar large-scale magnetic fields of moderate intensity (B-mean similar or equal to 0.25 kG); both are predominantly poloidal and feature a strong axisymmetric dipolar component. Conclusions. Both components of FK Aqr feature a rather strong large-scale magnetic field (compared to single early M dwarfs with similar masses) with a mainly dipolar axisymmetric structure. This type of magnetic field is not typical for single early M dwarfs, and is rather reminiscent of fully convective dwarfs with later spectral types. The primary FK Aqr A is currently the most massive recognised main sequence M dwarf known to host this type of strong dipolar field.
  •  
5.
  • Desa, L., et al. (författare)
  • Improving and upgrading an existing activated sludge with a compact MBBR : disc filters parallel line for municipal wastewater treatment in touristic alpine areas
  • 2020
  • Ingår i: Water practice and technology. - 1751-231X. ; 15:2, s. 515-527
  • Tidskriftsartikel (refereegranskat)abstract
    • Many wastewater treatment plants (WWTP) in touristic areas struggle to achieve the effluent requirements due to seasonal variations in population. In alpine areas, the climate also determines a low wastewater temperature, which implies long sludge retention time (SRT) needed for the growth of nitrifying biomass in conventional activated sludge (CAS). Moreover, combined sewers generate high flow and dilution. The present study shows how the treatment efficiency of an existing CAS plant with tertiary treatment can be upgraded by adding a compact line in parallel, consisting of a Moving Bed Biofilm Reactor (MBBR)-coagulation-flocculation-disc filtration. This allows the treatment of influent variations in the MBBR and a constant flow supply to the activated sludge. The performance of the new 2-step process was comparable to that of the improved existing one. Regardless significant variations in flow (10,000-25,000 m(3)/d) and total suspended solids (TSS) (50-300 mg/L after primary treatment) the effluent quality fulfilled the discharge requirements. Based on yearly average effluent data, TSS were 11 mg/L, chemical oxygen demand (COD) 27 mg/L and total phosphorus (TP) 0.8 mg/L. After the upgrade, ammonium nitrogen (NH4-N) dropped from 4.9 mg/L to 1.3 mg/L and the chemical consumption for phosphorus removal was reduced.
  •  
6.
  • Desa, L., et al. (författare)
  • Improving and upgrading an existing activated sludge with a compact MBBR - disc filters parallel line for municipal wastewater treatment in touristic alpine areas.
  • 2020
  • Ingår i: Water Practice and Technology. - : IWA Publishing. - 1751-231X. ; 15:2, s. 515-527
  • Tidskriftsartikel (refereegranskat)abstract
    • Many wastewater treatment plants (WWTP) in touristic areas struggle to achieve the effluent requirements due to seasonal variations in population. In alpine areas, the climate also determines a low wastewater temperature, which implies long sludge retention time (SRT) needed for the growth of nitrifying biomass in conventional activated sludge (CAS). Moreover, combined sewers generate high flow and dilution. The present study shows how the treatment efficiency of an existing CAS plant with tertiary treatment can be upgraded by adding a compact line in parallel, consisting of a Moving Bed Biofilm Reactor (MBBR)-coagulation-flocculation-disc filtration. This allows the treatment of influent variations in the MBBR and a constant flow supply to the activated sludge. The performance of the new 2-step process was comparable to that of the improved existing one. Regardless significant variations in flow (10,000-25,000 m(3)/d) and total suspended solids (TSS) (50-300 mg/L after primary treatment) the effluent qualityfulfilled the discharge requirements. Based on yearly average effluent data, TSS were 11 mg/L, chemical oxygen demand (COD) 27 mg/L and total phosphorus (TP) 0.8 mg/L. After the upgrade, ammonium nitrogen (NH4-N) dropped from 4.9 mg/L to 1.3 mg/L and the chemical consumption for phosphorus removal was reduced.
  •  
7.
  • Miliucci, M., et al. (författare)
  • Kaonic Deuterium Precision Measurement at DA Φ NE : The SIDDHARTA-2 Experiment
  • 2020
  • Ingår i: Recent Progress in Few-Body Physics : Proceedings of the 22nd International Conference on Few-Body Problems in Physics, FB22 2018 - Proceedings of the 22nd International Conference on Few-Body Problems in Physics, FB22 2018. - Cham : Springer International Publishing. - 1867-4941 .- 0930-8989. - 9783030323578 - 9783030323561 ; 238, s. 965-969
  • Bokkapitel (refereegranskat)abstract
    • Light kaonic atoms spectroscopy offers the unique opportunity to perform experiments equivalent to scattering at vanishing relative energies. This allows the determination of the antikaon-nucleus interaction at threshold, without the need of extrapolation to zero energy, as in the case of scattering experiments. In this framework, the SIDDHARTA-2 collaboration aims to perform the first measurement of kaonic deuterium transition to the fundamental level, which is mandatory to extract the isospin dependent antikaon—nucleon scattering lengths. The experiment will be carried out at the DA(formula presented)NE collider of LNF-INFN in 2019–2020.
  •  
8.
  • Tibaldi, Alberto, et al. (författare)
  • Analysis of Carrier Transport in Tunnel-Junction Vertical-Cavity Surface-Emitting Lasers by a Coupled Nonequilibrium Green's Function-Drift-Diffusion Approach
  • 2020
  • Ingår i: Physical Review Applied. - 2331-7019. ; 14:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This work investigates carrier transport in tunnel junctions for vertical-cavity surface-emitting lasers (VCSELs). The study is performed with a quantum-corrected semiclassical approach, where tunneling is described rigorously with a nonequilibrium Green's function formalism based on a multiband description of the electronic structure. Validated with experimental results, the proposed approach provides a quantum -kinetic perspective of the tunneling process and paves the way toward a comprehensive theory of VCSELs, bridging the gap between semiclassical and quantum simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy