SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Belmonte J.) srt2:(2010-2014)"

Sökning: WFRF:(Belmonte J.) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jiang, Rays H. Y., et al. (författare)
  • Distinctive Expansion of Potential Virulence Genes in the Genome of the Oomycete Fish Pathogen Saprolegnia parasitica
  • 2013
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 9:6, s. e1003272-
  • Tidskriftsartikel (refereegranskat)abstract
    • Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica.
  •  
2.
  • Belmonte, Rodrigo, et al. (författare)
  • Role of Pathogen-Derived Cell Wall Carbohydrates and Prostaglandin E-2 in Immune Response and Suppression of Fish Immunity by the Oomycete Saprolegnia parasitica
  • 2014
  • Ingår i: Infection and Immunity. - 0019-9567 .- 1098-5522. ; 82:11, s. 4518-4529
  • Tidskriftsartikel (refereegranskat)abstract
    • Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i. e., induction of interleukin-1 beta(1) [IL-1 beta(1)], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglanding E-2 (PGE(2)) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE(2) was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-gamma] and the IFN-gamma-inducible protein [gamma-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development.
  •  
3.
  • McLaughlin, CR, et al. (författare)
  • Regeneration of functional nerves within full thickness collagen-phosphorylcholine corneal substitute implants in guinea pigs
  • 2010
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612 .- 1878-5905. ; 31:10, s. 2770-2778
  • Tidskriftsartikel (refereegranskat)abstract
    • Our objective was to evaluate promotion of tissue and nerve regeneration by extracellular matrix (ECM) Mimics, using corneal implantation as a model system. Porcine type I collagen and 2-methacryloyloxyethyl phosphorylcholine (MPC) were crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) and moulded into appropriate corneal dimensions to serve as substitutes for natural corneal ECK These were implanted as full thickness grafts by penetrating keratoplasty into the corneas Of guinea pigs after removal of the host tissue, and tracked over eight months, by clinical examination, slit-lamp biomicroscopy, and esthesiometry. Histopathology and ex vivo nerve terminal impulse recordings were performed at three months and at eight months. The implants promoted regeneration of corneal cells, nerves and the tear film, while retaining optical clarity. After three months, electrophysiological recordings showed evidence of mechano-nociceptors, and polymodal units inside the implants, while cold-sensitive units were present only on the peripheral host cornea. Following eight months, the incidence of nerve activity and the frequency of spontaneous firing were higher than in control eyes as reported for regenerating fibers. Active cold nerve terminals also innervated the implant area. We show that ECM mimetic materials can promote regeneration of corneal cells and functional nerves. The simplicity in fabrication and demonstrated functionality shows potential for ECM substitutes in future clinical applications. (C) 2009 Elsevier Ltd. All rights reserved.
  •  
4.
  • Woods, Niels-Bjarne, et al. (författare)
  • Efficient Generation of Hematopoietic Precursors and Progenitors From Human Pluripotent Stem Cell Lines.
  • 2011
  • Ingår i: Stem Cells. - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 29:7, s. 1158-1164
  • Tidskriftsartikel (refereegranskat)abstract
    • By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS). Factors such as cytokines, extra cellular matrix components, and small molecules, as well as the temporal association and concentration of these factors were tested on seven different human ES and iPS lines. We report the differentiation of up to 84% huCD45+ cells (average 41% ± 16, from 7 pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38- hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ES and iPS lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice, but with multipotent hematopoietic potential. Because this protocol efficiently expands the pre-blood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy