SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Belova Lyuba) "

Sökning: WFRF:(Belova Lyuba)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Midander, Klara, et al. (författare)
  • Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach
  • 2012
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 427, s. 390-400
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuous daily measurements of airborne particles were conducted during specific periods at an underground platform within the subway system of the city center of Stockholm, Sweden. Main emphasis was placed on number concentration, particle size distribution, soot content (analyzed as elemental and black carbon) and surface area concentration. Conventional measurements of mass concentrations were conducted in parallel as well as analysis of particle morphology, bulk- and surface composition. In addition, the presence of volatile and semi volatile organic compounds within freshly collected particle fractions of PM 10 and PM 2.5 were investigated and grouped according to functional groups. Similar periodic measurements were conducted at street level for comparison.The investigation clearly demonstrates a large dominance in number concentration of airborne nano-sized particles compared to coarse particles in the subway. Out of a mean particle number concentration of 12000 particles/cm 3 (7500 to 20000 particles/cm 3), only 190 particles/cm 3 were larger than 250nm. Soot particles from diesel exhaust, and metal-containing particles, primarily iron, were observed in the subway aerosol. Unique measurements on freshly collected subway particle size fractions of PM 10 and PM 2.5 identified several volatile and semi-volatile organic compounds, the presence of carcinogenic aromatic compounds and traces of flame retardants.This interdisciplinary and multi-analytical investigation aims to provide an improved understanding of reported adverse health effects induced by subway aerosols.
  •  
2.
  • Fang, Mei, 1984-, et al. (författare)
  • The art of tailoring inks for inkjet printing metal oxides
  • 2012
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Inkjet printing has become a promising, efficient, inexpensive, scalable technique for materials deposition and mask-less patterning in many device applications. This article provides an introduction of the essentials of inkjet printing technology and ink preparation which remains a challenge especially for printing oxide transparent materials. After introducing the essentials of an inkjet printer and the process of the conversion of liquid ink into solid thin films of oxide materials, we present two approaches to the tailoring of inks, especially relevant for piezoelectric drop-on-demand ink jet printer: (1) the inks prepared from oxide particle suspensions (e.g., SiO2, TiO2, Fe3O4), and (2) metal-acetates precursor solutions for direct printing of thin films subsequently processed by calcination into the respective oxides like undoped and doped ZnO, MgO, ITO among others. The oxide films prepared this way using high purity precursors are free from undesirable contaminations, stoichiometric and when annealed appropriately produce smooth printed thin films. We place special emphasis upon preparation of inks that are stable without sediments over time so that the printing process is reliable and repeatable, and the obtained oxide films are dense and uniform. Also, for some of the inks containing multi-type acetates with possible phase separation even before calcinations we have developed a chelating procedure in order to tailor the films into single phase homogeneity. The films are characterized by optical microscope for micro features, high resolution SEM in a Nova600-Nanolab SEM/FIB system, and JEOL atomic force microscope for their morphology.
  •  
3.
  • Fang, Mei, 1984-, et al. (författare)
  • Thermal anealing effects on Ag/TiO2 thin films prepared by ink-jet printing
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The effects of heat treatment on both the phase structure and the electronic band structure were studied for Ag/TiO2 composite films prepared by inkjet printing. Ag nanoparticles can form ‘metal-bridge’ to link TiO2 particles in the mesoporous structured films and improve the transport properties of the films. The distribution of Ag in the composite films shows dependence on the annealing conditions: Ag clusters were observed at high annealing temperature (>600 °C), and they can be annihilated by a longer time annealing. Comparing with pure TiO2 films, the decreased intensity of the photoluminescence (PL) emission spectra of Ag/TiO2 composite films indicates that the doped Ag atoms could act as traps to capture electron and inhabit the recombination of electron-hole pairs. From the identifiable PL emission peaks, the band structure of the films is deduced.
  •  
4.
  • Kapilashrami, Mukes, et al. (författare)
  • Coexistence of ultraviolet photo-response and room-temperature ferromagnetism in polycrystalline ZnO thin films
  • 2010
  • Ingår i: Materials letters (General ed.). - : Elsevier BV. - 0167-577X .- 1873-4979. ; 64:11, s. 1291-1294
  • Tidskriftsartikel (refereegranskat)abstract
    • The coexistence of ultraviolet (UV) photoconductivity (PC) and room-temperature ferromagnetism (RTFM) is observed in polycrystalline ZnO thin films deposited by unbalanced magnetron sputtering under high oxygen pressure. A significant increase in PC (similar to 870% to 40000%) is observed with increasing film thickness and the consequent structural disorder and film porosity. In contrast, the saturation magnetization (M(S)) at room temperature is found to decrease from 1.02 emu/g to 0.53 emu/g with increasing film thickness from 50 to 150 nm.
  •  
5.
  •  
6.
  • Kapilashrami, Mukes, 1979- (författare)
  • Defect Induced Room-Temperature Ferromagnetism in ZnO and MgO Thin FIlms and Device Development
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents the discovery of defect induced room-temperature ferromagnetism in industrially important ZnO and MgO thin films, and establishes from a systematic study, in both ZnO and MgO films, the unique phenomenon of the sequences of transitions from ferromagnetism to para-, and eventually the well known diamagnetism of the bulk as a function of film thickness. Highly oriented and high quality dense thin films of ZnO and MgO have been deposited by reactive (balanced) magnetron sputtering under different ambience conditions and deposition temperatures. The ZnO thin films were deposited from a Zn metal target whereas the MgO thin films were deposited from an MgO ceramic target. Their magnetic properties have been studied as a function of both film thickness and variation in oxygen deposition pressure (for a given thickness) using a SQUID magnetometer. The ferromagnetic ordering in these materials is shown to arise from lattice defects situated at the cation sites. We discuss in detail the observed variation in their saturation magnetization, MS, as a function of the various deposition conditions and film characteristics (i.e. film thickness), and relate these to the nature and role of the intrinsic defects in giving rise to the observed magnetism. The in-plane saturation magnetization obtained in these films is at least two orders of magnitude larger as compared to what is measured in nanoparticles of similar dimensions. Furthermore it is shown that the magnetic properties in these thin films is directional dependent and that along the diagonal of the wurtzite structure at 45 degrees to the c-axis the MS values are about 60% larger. This we correlate with a calculation based on the structure which shows that the cation- cation distances along the diagonal is the shortest by similar magnitude. A Zn57O57 super-cell has been modelled using the Inorganic Crystal Structure Database (ICSD Diamond 3.0), from which we have calculated the shortest distance between two adjacent cation sites (i.e. potential cation vacancy sites) along the c-axis as well as perpendicular and along the diagonal (i.e. 45°) to the c-axis (along which the films have grown). Such possibilities to tailor defect induced ferromagnetism resulting in saturation magnetization of ≈ 5 emu/g, is indeed highly important information in understanding and designing thin film devices. In order to further tailor the physical property of polycrystalline ZnO thin films, un-balanced magnetron sputtering was used to obtain porous microstructured ZnO thin films to induce significant UV photoconductivity and demonstrate plausible device application. The above studies have been made possible using extensive characterization of the high quality films, in the thickness range from a few nanometers to almost a micron, using XRD for structure, Dual beam HRSEM/FIB and AFM for accurate film cross-sectioning and surface morphology, EDXS for elemental analysis and electrical/photo- conductivity measurements over a wide range of incident radiation from UV to visible. The overall conclusion is that the room-temperature ferromagnetic ordering in the ZnO and MgO thin films originates from cation vacancies which couple ferromagnetically and establish long range magnetic order.
  •  
7.
  •  
8.
  • Liu, Andong, et al. (författare)
  • Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions
  • 2011
  • Ingår i: Biomacromolecules. - : American Chemical Society. - 1525-7797 .- 1526-4602. ; 12:3, s. 633-641
  • Tidskriftsartikel (refereegranskat)abstract
    • Nacre-mimicking hybrids of high inorganic content (> 50 wt %) tend to show low strain-to-failure. Therefore, we prepared clay nanopaper hybrid composite montmorillonite platelets in a continuous matrix of nanofibrillated cellulose (NFC) with the aim of harnessing the intrinsic toughness of fibrillar networks. Hydrocolloid mixtures were used in a filtration approach akin to paper processing. The resulting multilayered structure of the nanopaper was studied by FE-SEM, FTIR, and XRD. Uniaxial stress strain curves measured in tension and thermal analysis were carried out by DMTA and TGA. In addition, fire retardance and oxygen permeability characteristics were measured. The continuous NFC matrix is a new concept and provides unusual ductility to the nanocomposite, allowing inorganic contents as high as 90% by weight. Clay nanopaper extends the property range of cellulose nanopaper and is of interest in self-extinguishing composites and in oxygen barrier layers.
  •  
9.
  • Nagar, Sandeep, 1980- (författare)
  • Multifunctional magnetic materials prepared by Pulsed Laser Deposition
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    •      Pulsed LASER deposition (PLD) is widely recognized as excellent deposition technique owing to stoichiometric transfer of target material, easy preparation and high quality. Thin films from few nanometers to micrometer regime can be fabricated with equal ease. Although a batch process is not suitable for mass scale industrial production, PLD is a versatile technique, efficient and convenient for high quality basic research.  This thesis illustrates the use of PLD technique to study the emerging trends in tailoring multifunctional magnetic thin films both from basic nanoscience and device development point of view.      After a comprehensive review of magnetism in chapter 1: entitled ‘A journey through classical to modern trends in magnetism, and multifunctional thin film devices’ followed by a reasonably thorough discussion on Pulsed Laser thin film technique in Chapter 2, we present: Studies of tailoring composite high energy product permanent magnetic FePtB based thin films for applications in NEMS /MEMS, (Chapter 3). Study of search for new multiferroic materials by investigating the properties of Chromites. Crystalline Chromites are antiferromagnetic below 150oC.  However depositing thin films by PLD of the crystalline 95.5% dense targets produced by Surface Plasma Sintering, we discovered that the resulting films were amorphous and ferromagnetic beyond room temperature. Moreover advanced spectroscopic techniques revealed that the amorphized state is metallic with Cr in a mixed valence state.   An understanding of the underlying physics of the observed phenomenon has been carried out based on first principles calculations.  These results are now being considered for publication in a high profile journal.  Extensive studies on the films showing that these materials are ferromagnetic, but not ferroelectric are discussed in chapter 4. A preliminary presentation of these studies was pier reviewed and published in MRS symposium proceedings. Fabrication of Room temperature, Transparent, high moment soft ferromagnetic amorphous Bulk metallic glass based FeBNbY thin films by PLD, suitable for Nanolithography in NEMS/MEMS device development .  (Chapter 5) From a basic study point of view on new trends on magnetism we present: 4. The use of PLD technique to demonstrate room temperature ferromagnetism in undoped MgO, and V-doped MgO thin films.  Both of these oxides which do not contain any intrinsically magnetic elements and are diamagnetic in their bulk form belong to a new class of magnetic films, the so called d0magnets signifying that robust above room temperature ferromagnetism arising from defects and controlled carriers and no occupied d-states can be tailored in semiconductors and insulators.  These, mostly ZnO and MgO based thin films which may be classified as Dilute Magnetic Semiconductors, DMS, and Dilute Magnetic Insulators, DMI, are now the materials of active interest in future Electronics involving components which exploit both charge and spin of electrons in the arena of SPINTRONICS. Extensive characterization of magnetic, electrical, optical properties and microscopic structure has ensured development of high quality magnetic materials for future applications. Further research on these promising materials is expected to yield new generation spintronic devices for better performance in terms of efficiency, energy consumption and miniaturization of sizes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy