SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beno Tomas) srt2:(2020-2021)"

Sökning: WFRF:(Beno Tomas) > (2020-2021)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agic, Adnan, 1967- (författare)
  • Edge Geometry Effects on Entry Phase by Forces and Vibrations
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Intermittent machining is in general strongly related to the large impacts in the entry phase and related vibrations. The influence of the impact forces and vibrations on the cutting process is dependent on workpiece material, structural properties of the tool-workpiece system, cutting edge geometries and cutting parameters. Cutting forces adopt generally a periodic behaviour that gives rise to forced vibrations. In addition, self-induced vibrations may arise because of lowrigidity and insufficient damping in the tool-workpiece system at specific cutting parameters. The ability of the cutting tool to carry the loads during the entry phase and minimize the vibrations is often the key parameter for an effective machining operation.This research work is based on the experiments, analytical studies and modelling. It was carried out through six main studies beginning with a force build-up analysis of the cutting edge entry into the workpiece in intermittent turning. This was followed by a second study, concentrated on modelling of the entry phase which has partly been explored through experiments and theory developed in the first study.The third part was focused on the influence of the radial depth of cut upon the entry of the cutting edge into the workpiece in a face milling application. The methodology for the identification of unfavourable radial depth of cut is also addressed herein. Next, effects of the cutting edge on the vibrations in an end milling application were investigated. This study was related to a contouring operation with the maximum chip thickness in the entry phase when machining steel, ISO P material.The results of this work provide some general recommendations when milling this type of workpiece material. After that, the focus was set on the dynamic cutting forces in milling. The force developments over a tooth engagement in milling showed to be strongly dependent on the cutting edge geometry. A significant difference between highly positive versus highly negative geometry was found.The implication of this phenomena on the stress state in the cutting edge and some practical issues were analysed. Finally, the role of the helix angle on the dynamic response of a workpiece was investigated. The modelling technique using force simulation and computation of the dynamic response by means of modal analysis was presented. Extensive experimental work was conducted to compare the modelling and experimentally obtained results. The modelling results showed a similar trend as the experimental results. The influence of helix angle on the cutting forces and the dynamic response was explained in detail.The research conducted in this work contributes to the deeper understanding of the influence of the cutting edge geometry and the cutting parameters on the force build up process during the entry phase. The presented studies investigate the force magnitudes, force rates and dynamic behaviour of the tools and workpieces when machining at the challenging entry conditions. The methodologies applied are focused on the physical quantities as forces and vibrations rather than the experimental studies that evaluate tool life. The methods and results of the research work are of great interest for the design of the cutting tools and optimization of the cutting processes.
  •  
2.
  • Devotta, Ashwin Moris, 1984- (författare)
  • Improved finite element modelingfor chip morphology prediction inmachining of C45E steel
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Within the manufacturing of metallic components, machining plays an important role and is of vital significance to ensure process reliability. From a cutting tool design perspective, physics-based numerical modeling that can predict chip morphology is highly necessary to design tool macro geometry. The chip morphology describes the chip shape geometry and the chip curl geometry. Improved chip morphology prediction increases process reliability by improved chip breakability and effective chip evacuation.To this end, in this work, a platform is developed to compare a numerical model'schip morphology prediction with experimental results. The investigated cuttingprocesses are orthogonal cutting process and nose turning process. Numerical models that simulate the chip formation process are used to predict the chip morphology accompanied by machining experiments. Computed tomography isused to scan the chips obtained from machining experiments evaluating its ability to capture the chip morphology variation. For the nose turning process, chip curl parameters need to be calculated during the cutting process. Kharkevich model is utilized in this regard for calculating the 'chip in process' chip curl parameters. High-speed videography is used to measure the chip side-flow angle during thecutting process experiments enabling comparison with physics-based model predictions.With regards to chip shape predictability, the numerical models that simulate the chip formation process are improved by improving the flow stress models and evaluating advanced damage models. The workpiece material, C45E steel, arecharacterized using Gleeble thermo-mechanical simulator. The obtained flow stress is modeled using phenomenological flow stress models. Existing phenomenological flow stress models are modified to improve their accuracy. The fracture initiation strain component of damage models' influence on the prediction of transition from continuous chip to segmented chip is studied. The flow stress models and the damage models are implemented in the numerical models through FORTRAN subroutines. The prediction of continuous to segmented chip transitions are evaluated for varying rake angles and feed rate ata constant cutting velocity.The results from the numerical model evaluation platform show that the methodology provides the framework where an advance in numerical models is evaluated reliably from a 'chip morphology prediction capability' viewpoint forthe nose turning process. The numerical modeling results show that the chip curl variation for varying cutting conditions is predicted qualitatively. The flow stress curves obtained through Gleeble thermo-mechanical simulator show dynamic strain aging presence in specific temperature -strain rate ranges. The results of the phenomenological model modification show their ability to incorporate the dynamic strain aging influence. The modified phenomenological model improvesthe accuracy of the numerical models' prediction accuracy. The flow stress models combined with advanced damage model can predict the transition from continuous to segmented chip. Within damage model, the fracture initiation strain component is observed to influence the continuous chip to segmented chip transition and chip segmentation intensity for varying rake angle and feed rate and at a constant cutting velocity.
  •  
3.
  • Devotta, Ashwin Moris, 1984-, et al. (författare)
  • Predicting Continuous Chip to Segmented Chip Transition in Orthogonal Cutting of C45E Steel through Damage Modeling
  • 2020
  • Ingår i: Metals. - : MDPI. - 2075-4701. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Machining process modeling has been an active endeavor for more than a century and it has been reported to be able to predict industrially relevant process outcomes. Recent advances in the fundamental understanding of material behavior and material modeling aids in improving the sustainability of industrial machining process. In this work, the flow stress behavior of C45E steel is modeled by modifying the well-known Johnson-Cook model that incorporates the dynamic strain aging (DSA) influence. The modification is based on the Voyiadjis-Abed-Rusinek (VAR) material model approach. The modified JC model provides the possibility for the first time to include DSA influence in chip formation simulations. The transition from continuous to segmented chip for varying rake angle and feed at constant cutting velocity is predicted while using the ductile damage modeling approach with two different fracture initiation strain models (Autenrieth fracture initiation strain model and Karp fracture initiation strain model). The result shows that chip segmentation intensity and frequency is sensitive to fracture initiation strain models. The Autenrieth fracture initiation strain model can predict the transition from continuous to segmented chip qualitatively. The study shows the transition from continuous chip to segmented chip for varying feed rates and rake angles for the first time. The study highlights the need for material testing at strain, strain rate, and temperature prevalent in the machining process for the development of flow stress and fracture models.
  •  
4.
  • Holmberg, Jonas, 1976-, et al. (författare)
  • A detailed investigation of residual stresses after milling Inconel 718 using typical production parameters for assessment of affected depth
  • 2020
  • Ingår i: Materials Today Communications. - : Elsevier Ltd. - 2352-4928. ; 24
  • Tidskriftsartikel (refereegranskat)abstract
    • Production of superalloy gas turbine parts involves time consuming milling operations typically performed in a sequence from rough to finish milling. Rough milling using ceramic inserts allows high removal rates but causes severe sub-surface impact. A relatively large allowance is therefore left for subsequent cemented carbide milling. With increased knowledge of the affected depth it will be possible to reduce the machining allowance and increase efficiency of the manufacturing process. Milling Inconel 718 using typical production parameters has been investigated using new and worn ceramic and cemented carbide inserts. Residual stresses in a milled slot were measured by x-ray diffraction. Stresses were measured laterally across the slot and below the surface, to study the depth affected by milling. The most important result from this work is the development of a framework concerning how to evaluate the affected depth for a milling operation. The evaluation of a single milled slot shows great potential for determining the optimum allowance for machining. Our results show that the residual stresses are greatly affected by the ceramic and cemented carbide milling; both regarding depth as well as distribution across the milled slot. It has been shown that it is important to consider that the stresses across a milled slot are the highest in the center of the slot and gradually decrease toward the edges. Different inserts, ceramic and cemented carbide, and tool wear, alter how the stresses are distributed across the slot and the affected depth.
  •  
5.
  • Holmberg, Jonas, 1976- (författare)
  • High volumetric machining strategies for superalloy gasturbine components : Comparing conventional and nonconventional machining methods for efficient manufacturing
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • There is a strong industrial driving force to find alternative manufacturing technologies in order to make the production of aero engine components of superalloys even more efficient than it is today. Introducing new and nonconventional machining technologies, as well as enhanced utilisation of today's high volumetric manufacturing, allows taking a leap to increase the material removal rate and the productivity. However, the final goal is to meet there quirements set for today's machined surfaces.The objective with the present work has been performed to show how the conventional, Milling, and the non-conventional machining methods, Abrasive Water Jet Machining, AWJM, Laser Beam Machining, LBM, and Electrical Discharge Machining, EDM, affect the surface integrity. This knowledge can beused to define and optimise different manufacturing alternatives for existing orfuture production.The results show that it is possible to use the rough milling to a greater extent if the impact on residuals stresses and deformation is used when determine the machining allowance. This could have a great impact on the productivity. However, further improvement of the productivity requires an alternative method. For this reason, EDM and AWJM was evaluated and shown to be suitable alternatives to today's manufacturing methods, but both methods require post processing. The results showed that a combination of two post processes is required for addressing issues with residue, topography and residual stresses.The most promising and effective manufacturing strategy would be EDM or AWJM for rough machining followed by post processing either by finish millingor post processing by means of High-Pressure Water Jet Cleaning and shot peening. If EDM and AWJM are to be considered as finish machining operations, further development of the two methods are required.
  •  
6.
  • Holmberg, Jonas, 1976-, et al. (författare)
  • Selection of milling strategy based on surface integrity investigations of highly deformed Alloy 718 after ceramic and cemented carbide milling
  • 2020
  • Ingår i: Journal of Manufacturing Processes. - : Elsevier Ltd. - 1526-6125. ; 58, s. 193-207
  • Tidskriftsartikel (refereegranskat)abstract
    • High speed milling with ceramic indexable inserts is a current practice for manufacturing of gas turbine components in superalloys since it allows for high material removal rates. Ceramic milling is used for rough milling, which is followed by cemented carbide semi- and finish milling. The tool motion play an important role on the resulting surface integrity. The machining strategy of up or down milling will induce different degree of residual stresses and deformations. Increased knowledge of selecting the machining strategy with lowest impact will promote improved productivity by using ceramic milling to a greater extent based on the affected depth. The main objective in this work has been to correlate the residual stresses and deformations to promote a greater utilization of ceramic milling while still producing surfaces with acceptable properties. Prior investigations have shown that ceramic milling induce very high tensile stresses in the surface, exceeding the material's nominal yield strength. A second objective has been to explain these stress levels by thorough investigations of the deformation after milling. In this study, milling tests with new and worn ceramic and cemented carbide inserts have been performed in Alloy 718. The topography, residual stresses, deformation and hardness have been investigated for up, centre and down milling. Residual stress measurements were performed using X-ray diffraction, followed by evaluation of hardness and deformation, using hardness testing, light optical microscopy as well as electron back scattering diffraction (EBSD). These results have been used to determine an appropriate milling strategy based on lowest possible impact in respect to residual stresses and deformation. The results show a high degree of deformation after milling that differs for the up, centre and down milling. Based on these results, it is shown that up milling is preferable for new inserts but as the inserts wear out, down milling becomes more suitable since a lower degree of deformation and residual stress impact was observed. EBSD and hardness testing showed that the milling, especially ceramic milling, caused severe deformation of the surfaces resulting in grain refinement to a nano-crystalline level. This is most likely the explanation for the prevalence of the high tensile stresses without distorting or causing failure. © 2020 The Authors
  •  
7.
  • Holmberg, Jonas, 1976-, et al. (författare)
  • Surface integrity investigation to determine rough milling effects for assessment of machining allowance for subsequent finish milling of alloy 718
  • 2021
  • Ingår i: Journal of Manufacturing and Materials Processing. - : MDPI AG. - 2504-4494. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The planned material volume to be removed from a blank to create the final shape of a part is commonly referred to as allowance. Determination of machining allowance is essential and has a great impact on productivity. The objective of the present work is to use a case study to investigate how a prior rough milling operation affects the finish machined surface and, after that, to use this knowledge to design a methodology for how to assess the machining allowance for subsequent milling operations based on residual stresses. Subsequent milling operations were performed to study the final surface integrity across a milled slot. This was done by rough ceramic milling followed by finish milling in seven subsequent steps. The results show that the up-, centre and down-milling induce different stresses and impact depths. Employing the developed methodology, the depth where the directional influence of the milling process diminishes has been shown to be a suitable minimum limit for the allowance. At this depth, the plastic flow causing severe deformation is not present anymore. It was shown that the centre of the milled slot has the deepest impact depth of 500 µm, up-milling caused an intermediate impact depth of 400 µm followed by down milling with an impact depth of 300 µm. With merged envelope profiles, it was shown that the effects from rough ceramic milling are gone after 3 finish milling passes, with a total depth of cut of 150 µm. © 2021 by the authors. 
  •  
8.
  • Holmberg, Jonas, 1976-, et al. (författare)
  • Surface integrity investigations for prediction of fatigue properties after machining of alloy 718
  • 2021
  • Ingår i: International Journal of Fatigue. - : Elsevier Ltd. - 0142-1123 .- 1879-3452. ; 144
  • Tidskriftsartikel (refereegranskat)abstract
    • Fatigue performance is crucial for gas turbine components, and it is greatly affected by the manufacturing processes. Ability to predict the expected fatigue life of a component based on surface integrity has been the objective in this work, enabling new processing methods. Alloy 718 samples were prepared by different machining setups, evaluated in fatigue testing and surface integrity investigations. These results generated two predictive statistical multi-variate regression models. The fatigue correlated well with roughness, residual stresses and deformation. The two models showed great potential, which encourages further exploration to fine-tune the procedure for the particular case. © 2020 The Authors
  •  
9.
  • Parsian, Amir, et al. (författare)
  • Minimizing the Negative Effects of Coolant Channels on the Torsional and Torsional-Axial Stiffness of Drills
  • 2021
  • Ingår i: Metals. - : MDPI. - 2075-4701. ; 11:9, s. 1473-1473
  • Tidskriftsartikel (refereegranskat)abstract
    • Coolant channels allow internal coolant delivery to the cutting region and significantly improve drilling, but these channels also reduce the torsional and torsional-axial stiffness of the drills. Such a reduction in stiffness can degrade the quality of the drilled holes. The evacuation of cutting chips and the delivery of the cutting fluid put strict geometrical restrictions on the cross-section design of the drill. This necessitates careful selection and optimization of features such as the geometry of the coolant channels. This paper presents a new method that uses Prandtl’s stress function to predict the torsional and torsional-axial stiffness values. Using this method drills with one central channel are compared to those with two eccentric coolant channels, which shows that with the same cross-section area, the reduction of axial and torsional-axial stiffness is notably smaller for the design with two eccentric channels compared to a single central channel. The stress function method is further used to select the appropriate location of the eccentric coolant channels to minimize the loss of torsional and torsional-axial stiffness. These results are verified by comparison to the results of three-dimensional finite element analyses.
  •  
10.
  • Tamil Alagan, Nageswaran, 1990-, et al. (författare)
  • Coolant boiling and cavitation wear : a new tool wear mechanism on WC tools in machining Alloy 718 with high-pressure coolant
  • 2020
  • Ingår i: Wear. - : Elsevier. - 0043-1648 .- 1873-2577. ; 452-453
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, research interest in liquid coolant media applied to the tool–workpiece interface (the tertiary shear zone) has grown considerably. In particular, attention has increased for work where the media has been applied under high-pressure. This is most likely triggered by the positive results reported on similar applications, but with coolant media directed towards the rake face of the cutting tool (the secondary shear zone). The most typical applications have not surprisingly been related to the machining of Heat Resistant Super Alloys (HRSA) or other “difficult to machine” alloys where the main intention has been to extend tool life and improve surface finish through reduced shear zone temperatures. Concurrently, these achievements have revealed a knowledge gap and unlocked a new research area in understanding the effects and influences of coolant media applied on super-heated surfaces under high-pressure conditions. The aim of this study is to investigate the “coolant boiling and cavitation” phenomena that emerges during the application of coolant under high-pressure to the flank face of an uncoated WC tool while turning Alloy 718. The experimental campaign was conducted in three aspects: varying flank (coolant media) pressure; varying spiral cutting length (SCL); and varying cutting speed. The results revealed that the location and size of the coolant-boiling region correlated with flank wear, coolant pressure and vapour pressure of the coolant at the investigated pressure levels. Further, the results showed that coolant applied with a lower pressure than the vapour pressure of the coolant itself caused the “Leidenfrost” effect. This then acts as a coolant media barrier and effectively reduces the heat transport from the cutting zone. Further, erosion pits were observed on small areas of the cutting tool, resembling the typical signs of cavitation (usually found in much different applications such as pumps and propellers). The discovered wear mechanism denoted as “Cavitation Wear” was used as base for the discussion aimed to deepen the understanding of the conditions close to the sliding interface between the tool and the workpiece. Even though “Cavitation Wear” has been widely reported in hydraulic systems like pumps and water turbines, it is a new phenomenon to be seen on cutting tools while using high-pressure flank cooling. © 2020 The Authors
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy