SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berg Otto G) srt2:(2010-2014)"

Sökning: WFRF:(Berg Otto G) > (2010-2014)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hammar, Petter, et al. (författare)
  • The lac repressor displays facilitated diffusion in living cells
  • 2012
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 336:6088, s. 1595-1598
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcription factors (TFs) are proteins that regulate the expression of genes by binding sequence-specific sites on the chromosome. It has been proposed that to find these sites fast and accurately, TFs combine one-dimensional (1D) sliding on DNA with 3D diffusion in the cytoplasm. This facilitated diffusion mechanism has been demonstrated in vitro, but it has not been shown experimentally to be exploited in living cells. We have developed a single-molecule assay that allows us to investigate the sliding process in living bacteria. Here we show that the lac repressor slides 45 ± 10 base pairs on chromosomal DNA and that sliding can be obstructed by other DNA-bound proteins near the operator. Furthermore, the repressor frequently (>90%) slides over its natural lacO(1) operator several times before binding. This suggests a trade-off between rapid search on nonspecific sequences and fast binding at the specific sequence.
  •  
2.
  • Marklund, Erik G., et al. (författare)
  • Transcription-factor binding and sliding on DNA studied using micro- and macroscopic models
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:49, s. 19796-19801
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcription factors search for specific operator sequences by alternating rounds of 3D diffusion with rounds of 1D diffusion (sliding) along the DNA. The details of such sliding have largely been beyond direct experimental observation. For this purpose we devised an analytical formulation of umbrella sampling along a helical coordinate, and from extensive and fully atomistic simulations we quantified the free-energy landscapes that underlie the sliding dynamics and dissociation kinetics for the LacI dimer. The resulting potential of mean force distributions show a fine structure with an amplitude of 1 k(B)T for sliding and 12 kBT for dissociation. Based on the free-energy calculations the repressor slides in close contact with DNA for 8 bp on average before making a microscopic dissociation. By combining the microscopic molecular-dynamics calculations with Brownian simulation including rotational diffusion from the microscopically dissociated state we estimate a macroscopic residence time of 48 ms at the same DNA segment and an in vitro sliding distance of 240 bp. The sliding distance is in agreement with previous in vitro sliding-length estimates. The in vitro prediction for the macroscopic residence time also compares favorably to what we measure by single-molecule imaging of nonspecifically bound fluorescently labeled LacI in living cells. The investigation adds to our understanding of transcription-factor search kinetics and connects the macro-/mesoscopic rate constants to the microscopic dynamics.
  •  
3.
  • Adler, Marlen, 1984-, et al. (författare)
  • High Fitness Costs and Instability of Gene Duplications Reduce Rates of Evolution of New Genes by Duplication-Divergence Mechanisms
  • 2014
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 31:6, s. 1526-1535
  • Tidskriftsartikel (refereegranskat)abstract
    • An important mechanism for generation of new genes is by duplication-divergence of existing genes. Duplication-divergence includes several different sub-models, such as subfunctionalization where after accumulation of neutral mutations the original function is distributed between two partially functional and complementary genes, and neofunctionalization where a new function evolves in one of the duplicated copies while the old function is maintained in another copy. The likelihood of these mechanisms depends on the longevity of the duplicated state, which in turn depends on the fitness cost and genetic stability of the duplications. Here, we determined the fitness cost and stability of defined gene duplications/amplifications on a low copy number plasmid. Our experimental results show that the costs of carrying extra gene copies are substantial and that each additional kbp of DNA reduces fitness by approximately 0.15%. Furthermore, gene amplifications are highly unstable and rapidly segregate to lower copy numbers in absence of selection. Mathematical modelling shows that the fitness costs and instability strongly reduces the likelihood of both sub- and neofunctionalization, but that these effects can be off-set by positive selection for novel beneficial functions.
  •  
4.
  • Fange, David, et al. (författare)
  • Stochastic reaction-diffusion kinetics in the microscopic limit
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 107:46, s. 19820-19825
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative analysis of biochemical networks often requires consideration of both spatial and stochastic aspects of chemical processes. Despite significant progress in the field, it is still computationally prohibitive to simulate systems involving many reactants or complex geometries using a microscopic framework that includes the finest length and time scales of diffusion-limited molecular interactions. For this reason, spatially or temporally discretized simulations schemes are commonly used when modeling intracellular reaction networks. The challenge in defining such coarse-grained models is to calculate the correct probabilities of reaction given the microscopic parameters and the uncertainty in the molecular positions introduced by the spatial or temporal discretization. In this paper we have solved this problem for the spatially discretized Reaction-Diffusion Master Equation; this enables a seamless and physically consistent transition from the microscopic to the macroscopic frameworks of reaction-diffusion kinetics. We exemplify the use of the methods by showing that a phosphorylation-dephosphorylation motif, commonly observed in eukaryotic signaling pathways, is predicted to display fluctuations that depend on the geometry of the system.    
  •  
5.
  • Gullberg, Erik, et al. (författare)
  • Selection of Resistant Bacteria at Very Low Antibiotic Concentrations
  • 2011
  • Ingår i: PLoS pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 7:7, s. e1002158-
  • Tidskriftsartikel (refereegranskat)abstract
    • The widespread use of antibiotics is selecting for a variety of resistance mechanisms that seriously challenge our ability to treat bacterial infections. Resistant bacteria can be selected at the high concentrations of antibiotics used therapeutically, but what role the much lower antibiotic concentrations present in many environments plays in selection remains largely unclear. Here we show using highly sensitive competition experiments that selection of resistant bacteria occurs at extremely low antibiotic concentrations. Thus, for three clinically important antibiotics, drug concentrations up to several hundred-fold below the minimal inhibitory concentration of susceptible bacteria could enrich for resistant bacteria, even when present at a very low initial fraction. We also show that de novo mutants can be selected at sub-MIC concentrations of antibiotics, and we provide a mathematical model predicting how rapidly such mutants would take over in a susceptible population. These results add another dimension to the evolution of resistance and suggest that the low antibiotic concentrations found in many natural environments are important for enrichment and maintenance of resistance in bacterial populations.
  •  
6.
  • Lind, Peter A, et al. (författare)
  • Compensatory gene amplification restores fitness after inter-species gene replacements
  • 2010
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 75:5, s. 1078-1089
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes introduced by gene replacements and other types of horizontal gene transfer (HGT) represent a significant presence in many archaeal and eubacterial genomes. Most alien genes are likely to be neutral or deleterious upon arrival and their long-term persistence may require a mechanism that improves their selective contribution. To examine the fate of inter-species gene replacements, we exchanged three native S. typhimurium genes encoding ribosomal proteins with orthologues from various other microbes. The results show that replacement of each of these three genes reduces fitness to such an extent that it would provide an effective barrier against inter-species gene replacements in eubacterial populations. However, these fitness defects could be partially ameliorated by gene amplification that augmented the dosage of the heterologous proteins. This suggests that suboptimal expression is a common fitness constraint for inter-species gene replacements, with fitness costs conferred by either a lower expression level of the alien protein compared with the native protein or a requirement for an increased amount of the alien protein to maintain proper function. Our findings can explain the observation that duplicated genes are over-represented among horizontally transferred genes, and suggest a potential coupling between compensatory gene amplification after HGT and the evolution of new genes.
  •  
7.
  • Lind, Peter A., et al. (författare)
  • Mutational robustness of ribosomal protein genes
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 330:6005, s. 825-827
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution of fitness effects (DFE) of mutations is of fundamental importance for understanding evolutionary dynamics and complex diseases and for conserving threatened species. DFEs estimated from DNA sequences have rarely been subject to direct experimental tests. We used a bacterial system in which the fitness effects of a large number of defined single mutations in two ribosomal proteins were measured with high sensitivity. The obtained DFE appears to be unimodal, where most mutations (120 out of 126) are weakly deleterious and the remaining ones are potentially neutral. The DFEs for synonymous and nonsynonymous substitutions are similar, suggesting that in some genes, strong fitness constraints are present at the level of the messenger RNA.
  •  
8.
  • Mahmutovic, Anel, et al. (författare)
  • Lost in presumption : stochastic reactions in spatial models
  • 2012
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 9:12, s. 1163-1166
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical modeling is increasingly important for generating insights into intracellular processes. We describe situations in which combined spatial and stochastic aspects of chemical reactions are needed to capture the relevant dynamics of biochemical systems.
  •  
9.
  •  
10.
  • Söderberg, R. Jonas, et al. (författare)
  • Kick-Starting the Ratchet : The Fate of Mutators in an Asexual Population
  • 2011
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 0016-6731 .- 1943-2631. ; 187:4, s. 1129-1137
  • Tidskriftsartikel (refereegranskat)abstract
    • Muller's ratchet operates in asexual populations without intergenomic recombination. In this case, deleterious mutations will accumulate and population fitness will decline over time, possibly endangering the survival of the species. Mutator mutations, i.e., mutations that lead to an increased mutation rate, will play a special role for the behavior of the ratchet. First, they are part of the ratchet and can come to dominance through accumulation in the ratchet. Second, the fitness-loss rate of the ratchet is very sensitive to changes in the mutation rate and even a modest increase can easily set the ratchet in motion. In this article we simulate the interplay between fitness loss from Muller's ratchet and the evolution of the mutation rate from the fixation of mutator mutations. As long as the mutation rate is increased in sufficiently small steps, an accelerating ratchet and eventual extinction are inevitable. If this can be countered by antimutators, i.e., mutations that reduce the mutation rate, an equilibrium can be established for the mutation rate at some level that may allow survival. However, the presence of the ratchet amplifies fluctuations in the mutation rate and, even at equilibrium, these fluctuations can lead to dangerous bursts in the ratchet. We investigate the timescales of these processes and discuss the results with reference to the genome degradation of the aphid endosymbiont Buchnera aphidicola.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy