SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bergemann Maria) srt2:(2020-2024)"

Sökning: WFRF:(Bergemann Maria) > (2020-2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • D’Orazi, Valentina, et al. (författare)
  • The GALAH survey : tracing the Milky Way’s formation and evolution through RR Lyrae stars
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711. ; 531:1, s. 137-162
  • Tidskriftsartikel (refereegranskat)abstract
    • Stellar mergers and accretion events have been crucial in shaping the evolution of the Milky Way (MW). These events have been dynamically identified and chemically characterized using red giants and main-sequence stars. RR Lyrae (RRL) variables can play a crucial role in tracing the early formation of the MW since they are ubiquitous, old (t ≥ 10 Gyr) low-mass stars and accurate distance indicators. We exploited Data Release 3 of the GALAH survey to identify 78 field RRLs suitable for chemical analysis. Using synthetic spectra calculations, we determined atmospheric parameters and abundances of Fe, Mg, Ca, Y, and Ba. Most of our stars exhibit halo-like chemical compositions, with an iron peak around [Fe/H] ≈ −1.40, and enhanced Ca and Mg content. Notably, we discovered a metal-rich tail, with [Fe/H] values ranging from −1 to approximately solar metallicity. This sub-group includes almost 1/4 of the sample, it is characterized by thin disc kinematics and displays sub-solar α-element abundances, marginally consistent with the majority of the MW stars. Surprisingly, they differ distinctly from typical MW disc stars in terms of the s-process elements Y and Ba. We took advantage of similar data available in the literature and built a total sample of 535 field RRLs for which we estimated kinematical and dynamical properties. We found that metal-rich RRLs (1/3 of the sample) likely represent an old component of the MW thin disc. We also detected RRLs with retrograde orbits and provided preliminary associations with the Gaia–Sausage–Enceladus, Helmi, Sequoia, Sagittarius, and Thamnos stellar streams.
  •  
2.
  • Gent, Matthew Raymond, et al. (författare)
  • The SAPP pipeline for the determination of stellar abundances and atmospheric parameters of stars in the core program of the PLATO mission
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the SAPP (Stellar Abundances and atmospheric Parameters Pipeline), the prototype of the code that will be used to determine parameters of stars observed within the core program of the PLATO space mission. The pipeline is based on the Bayesian inference and provides effective temperature, surface gravity, metallicity, chemical abundances, and luminosity. The code in its more general version has a much wider range of potential applications. It can also provide masses, ages, and radii of stars and can be used with stellar types not targeted by the PLATO core program, such as red giants. We validate the code on a set of 27 benchmark stars that includes 19 FGK-type dwarfs, 6 GK-type subgiants, and 2 red giants. Our results suggest that combining various observables is the optimal approach, as this allows the degeneracies between different parameters to be broken and yields more accurate values of stellar parameters and more realistic uncertainties. For the PLATO core sample, we obtain a typical uncertainty of 27 (syst.) +/- 37 (stat.) K for T-eff, 0.00 +/- 0.01 dex for log g, 0.02 +/- 0.02 dex for metallicity [Fe/H], -0.01 +/- 0.03 R-circle dot for radii, -0.01 +/- 0.05 M-circle dot for stellar masses, and -0.14 +/- 0.63 Gyr for ages. We also show that the best results are obtained by combining the nu(max) scaling relation with stellar spectra. This resolves the notorious problem of degeneracies, which is particularly important for F-type stars.
  •  
3.
  • Bergemann, Maria, et al. (författare)
  • Solar oxygen abundance
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:2, s. 2236-2253
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivated by the controversy over the surface metallicity of the Sun, we present a re-analysis of the solar photospheric oxygen (O) abundance. New atomic models of O and Ni are used to perform non-local thermodynamic equilibrium (NLTE) calculations with 1D hydrostatic (MARCS) and 3D hydrodynamical (Stagger and Bifrost) models. The Bifrost 3D MHD simulations are used to quantify the influence of the chromosphere. We compare the 3D NLTE line profiles with new high-resolution, R≈700000≈700000⁠, spatially resolved spectra of the Sun obtained using the IAG FTS instrument. We find that the O I lines at 777 nm yield the abundance of log A(O) = 8.74 ± 0.03 dex, which depends on the choice of the H-impact collisional data and oscillator strengths. The forbidden [O I] line at 630 nm is less model dependent, as it forms nearly in LTE and is only weakly sensitive to convection. However, the oscillator strength for this transition is more uncertain than for the 777 nm lines. Modelled in 3D NLTE with the Ni I blend, the 630 nm line yields an abundance of log A(O) = 8.77 ± 0.05 dex. We compare our results with previous estimates in the literature and draw a conclusion on the most likely value of the solar photospheric O abundance, which we estimate at log A(O) = 8.75 ± 0.03 dex.
  •  
4.
  • Gerber, Jeffrey M. M., et al. (författare)
  • Non-LTE radiative transfer with Turbospectrum
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Physically realistic models of stellar spectra are needed in a variety of astronomical studies, from the analysis of fundamental stellar parameters, to studies of exoplanets and stellar populations in galaxies. Here we present a new version of the widely used radiative transfer code Turbospectrum, which we update so that it is able to perform spectrum synthesis for lines of multiple chemical elements in non-local thermodynamic equilibrium (NLTE). We use the code in the analysis of metallicites and abundances of the Gaia FGK benchmark stars, using 1D MARCS atmospheric models and the averages of 3D radiation-hydrodynamics simulations of stellar surface convection. We show that the new more physically realistic models offer a better description of the observed data, and we make the program and the associated microphysics data publicly available, including grids of NLTE departure coefficients for H, O, Na, Mg, Si, Ca, Ti, Mn, Fe, Co, Ni, Sr, and Ba.
  •  
5.
  • Magg, Ekaterina, et al. (författare)
  • Observational constraints on the origin of the elements IV. Standard composition of the Sun
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 661
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The chemical composition of the Sun is required in the context of various studies in astrophysics, among them in the calculation of standard solar models (SSMs) used to describe the evolution of the Sun from the pre-main-sequence to its present age. Aims. In this work, we provide a critical re-analysis of the solar chemical abundances and corresponding SSMs. Methods. For the photospheric values, we employed new high-quality solar observational data collected with the IAG facility, state-of-the art non-equilibrium modelling, new oscillator strengths, and different atmospheric models, including the MARCS model, along with averages based on Stagger and CO5BOLD 3D radiation-hydrodynamics simulations of stellar convection. We performed new calculations of oscillator strengths for transitions in O I and N I. For O I, which is a critical element with regard to the interior models, calculations were carried out using several independent methods. We investigated our results in comparison with the previous estimates. Results. We find an unprecedented agreement between the new estimates of transition probabilities, thus supporting our revised solar oxygen abundance value. We also provide new estimates of the noble gas Ne abundance. In addition, we discuss the consistency of our photospheric measurements with meteoritic values, taking into account the systematic and correlated errors. Finally, we provide revised chemical abundances, leading to a new value proposed for the solar photospheric present-day metallicity of Z/X=0.0225, which we then employed in SSM calculations. We find that the puzzling mismatch between the helioseismic constraints on the solar interior structure and the model can be resolved thanks to this new chemical composition.
  •  
6.
  • Nielsen, Jesper, et al. (författare)
  • Planet formation throughout the Milky Way : Planet populations in the context of Galactic chemical evolution
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361. ; 678
  • Tidskriftsartikel (refereegranskat)abstract
    • As stellar compositions evolve over time in the Milky Way, so will the resulting planet populations. In order to place planet formation in the context of Galactic chemical evolution, we made use of a large (N = 5325) stellar sample representing the thin and thick discs, defined chemically, and the halo, and we simulated planet formation by pebble accretion around these stars. We built a chemical model of their protoplanetary discs, taking into account the relevant chemical transitions between vapour and refractory minerals, in order to track the resulting compositions of formed planets. We find that the masses of our synthetic planets increase on average with increasing stellar metallicity [Fe/H] and that giant planets and super-Earths are most common around thin-disc (α-poor) stars since these stars have an overall higher budget of solid particles. Giant planets are found to be very rare (≲1%) around thick-disc (α-rich) stars and nearly non-existent around halo stars. This indicates that the planet population is more diverse for more metal-rich stars in the thin disc. Water-rich planets are less common around low-metallicity stars since their low metallicity prohibits efficient growth beyond the water ice line. If we allow water to oxidise iron in the protoplanetary disc, this results in decreasing core mass fractions with increasing [Fe/H]. Excluding iron oxidation from our condensation model instead results in higher core mass fractions, in better agreement with the core-mass fraction of Earth, that increase with increasing [Fe/H]. Our work demonstrates how the Galactic chemical evolution and stellar parameters, such as stellar mass and chemical composition, can shape the resulting planet population.
  •  
7.
  • Semenova, Ekaterina, et al. (författare)
  • The Gaia -ESO survey : 3D NLTE abundances in the open cluster NGC 2420 suggest atomic diffusion and turbulent mixing are at the origin of chemical abundance variations
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomic diusion and mixing processes in stellar interiors influence the structure and the surface composition of stars. Some of these processes cannot yet be modelled from the first principles, and they require calibrations. This limits their applicability in stellar models used for studies of stellar populations and Galactic evolution. Aims. Our main goal is to put constraints on the stellar structure and evolution models using new refined measurements of the chemical composition in stars of a Galactic open cluster. Methods.We used medium-resolution, 19 200 R 21 500, optical spectra of stars in the open cluster NGC2420 obtained within the Gaia-ESO survey. The sample covers all evolutionary stages from the main sequence to the red giant branch. Stellar parameters were derived using a combined Bayesian analysis of spectra, 2MASS photometry, and astrometric data from Gaia DR2. The abundances of Mg, Ca, Fe, and Li were determined from non-local thermodynamic equilibrium (NLTE) synthetic spectra, which were computed using one-dimensional (1D) and averaged three-dimensional (3D) model atmospheres. We compare our results with a grid of Code d'Evolution Stellaire Adaptatif et Modulaire (CESTAM) stellar evolution models, which include atomic diusion, turbulent, and rotational mixing. Results. We find prominent evolutionary trends in the abundances of Fe, Ca, Mg, and Li with the mass of the stars in the cluster. Furthermore, Fe, Mg, and Ca show a depletion at the cluster turn-o, but the abundances gradually increase and flatten near the base of the red giant branch. The abundance trend for Li displays a signature of rotational mixing on the main sequence and abrupt depletion on the sub-giant branch, which is caused by advection of Li-poor material to the surface. The analysis of abundances combined with the CESTAM model predictions allows us to place limits on the parameter space of the models and to constrain the zone in the stellar interior, where turbulent mixing takes place.
  •  
8.
  • Serenelli, Aldo, et al. (författare)
  • Weighing stars from birth to death : mass determination methods across the HRD
  • 2021
  • Ingår i: Astronomy and Astrophysics Review. - : Springer Science and Business Media LLC. - 0935-4956 .- 1432-0754. ; 29:1
  • Forskningsöversikt (refereegranskat)abstract
    • The mass of a star is the most fundamental parameter for its structure, evolution, and final fate. It is particularly important for any kind of stellar archaeology and characterization of exoplanets. There exist a variety of methods in astronomy to estimate or determine it. In this review we present a significant number of such methods, beginning with the most direct and model-independent approach using detached eclipsing binaries. We then move to more indirect and model-dependent methods, such as the quite commonly used isochrone or stellar track fitting. The arrival of quantitative asteroseismology has opened a completely new approach to determine stellar masses and to complement and improve the accuracy of other methods. We include methods for different evolutionary stages, from the pre-main sequence to evolved (super)giants and final remnants. For all methods uncertainties and restrictions will be discussed. We provide lists of altogether more than 200 benchmark stars with relative mass accuracies between [0.3 , 2] % for the covered mass range of M∈[0.1,16]M⊙, 75 % of which are stars burning hydrogen in their core and the other 25 % covering all other evolved stages. We close with a recommendation how to combine various methods to arrive at a “mass-ladder” for stars.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy