SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berger Stella A.) srt2:(2010-2014)"

Sökning: WFRF:(Berger Stella A.) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Calbet, Albert, et al. (författare)
  • Future Climate Scenarios for a Coastal Productive Planktonic Food Web Resulting in Microplankton Phenology Changes and Decreased Trophic Transfer Efficiency
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:4, s. e94388-
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the effects of future climate change scenarios on plankton communities of a Norwegian fjord using a mesocosm approach. After the spring bloom, natural plankton were enclosed and treated in duplicates with inorganic nutrients elevated to pre-bloom conditions (N, P, Si; eutrophication), lowering of 0.4 pH units (acidification), and rising 3 degrees C temperature (warming). All nutrient-amended treatments resulted in phytoplankton blooms dominated by chain-forming diatoms, and reached 13-16 mu g chlorophyll (chl) a l(-1). In the control mesocosms, chl a remained below 1 mu g l(-1). Acidification and warming had contrasting effects on the phenology and bloom-dynamics of autotrophic and heterotrophic microplankton. Bacillariophyceae, prymnesiophyceae, cryptophyta, and Protoperidinium spp. peaked earlier at higher temperature and lower pH. Chlorophyta showed lower peak abundances with acidification, but higher peak abundances with increased temperature. The peak magnitude of autotrophic dinophyceae and ciliates was, on the other hand, lowered with combined warming and acidification. Over time, the plankton communities shifted from autotrophic phytoplankton blooms to a more heterotrophic system in all mesocosms, especially in the control unaltered mesocosms. The development of mass balance and proportion of heterotrophic/autotrophic biomass predict a shift towards a more autotrophic community and less-efficient food web transfer when temperature, nutrients and acidification are combined in a future climate-change scenario. We suggest that this result may be related to a lower food quality for microzooplankton under acidification and warming scenarios and to an increase of catabolic processes compared to anabolic ones at higher temperatures.
  •  
2.
  • Berger, Stella A., et al. (författare)
  • Separating effects of climatic drivers and biotic feedbacks on seasonal plankton dynamics : no sign of trophic mismatch
  • 2014
  • Ingår i: Freshwater Biology. - : Wiley. - 0046-5070 .- 1365-2427. ; 59:10, s. 2204-2220
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change may impact most strongly on temperate lake plankton communities in spring, when light availability and water temperature change rapidly due to thermal stratification. Effects of changing light and temperature on one food-web component transfer to other components, producing a complex interplay between physical drivers and biotic feedbacks. Understanding this interplay is important, because altered climate regimes could result in phenological mismatch between the phytoplankton spring bloom and the timing of maximum food requirements of grazers. To separate direct effects of light and temperature on spring plankton dynamics from effects mediated through micro- and mesograzer feedbacks, we manipulated water temperature, stratification depth and presence/absence of the mesograzer Daphnia in lake mesocosms. In early spring, stratification depth and water temperature directly influenced the light supply to phytoplankton and the growth rates of all plankton groups. Subsequently, indirect effects, including light-dependent food supply to grazers and temperature-dependent grazing pressure, became increasingly important. Phytoplankton and Daphnia peaked earlier in warmer treatments and reached higher peaks when stratification depth was shallower. Ciliates responded positively to increased food density and higher temperature and subsequently affected the taxonomic composition, but not the total biomass, of phytoplankton. In the absence of Daphnia, phytoplankton did not enter a distinct clear water phase. When present, Daphnia caused an extended clear water phase, maintaining phytoplankton and ciliates at low levels throughout early summer and suppressing all direct effects of physical drivers on these plankton groups. Our Daphnia treatments mimicked the high and low fish predation settings of the largely descriptive, recently revised Plankton Ecology Group (PEG) model of seasonal plankton succession and explored their responses to climate change scenarios. The results largely support the PEG model, but attribute greater importance to early season temperature effects and later season grazing effects of Daphnia. In warmer treatments, the timing of phytoplankton and zooplankton peaks tended to be more closely coupled, and temperature did not affect the height of zooplankton peaks. In line with other experiments, these results do not support the widely held concern that warming may create a trophic mismatch between phytoplankton and zooplankton and reduce spring zooplankton production.
  •  
3.
  • Berger, Stella A, et al. (författare)
  • Water temperature and stratification depth independently shift cardinal events during plankton spring succession
  • 2010
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 16:7, s. 1954-1965
  • Tidskriftsartikel (refereegranskat)abstract
    • In deep temperate lakes, the beginning of the growing season is triggered by thermal stratification, which alleviates light limitation of planktonic producers in the surface layer and prevents heat loss to deeper strata. The sequence of subsequent phenological events (phytoplankton spring bloom, grazer peak, clearwater phase) results in part from coupled phytoplankton–grazer interactions. Disentangling the separate, direct effects of correlated climatic drivers (stratification-dependent underwater light climate vs. water temperature) from their indirect effects mediated through trophic feedbacks is impossible using observational field data, which challenges our understanding of global warming effects on seasonal plankton dynamics. We therefore manipulated water temperature and stratification depth independently in experimental field mesocosms containing ambient microplankton and inocula of the resident grazer Daphnia hyalina. Higher light availability in shallower surface layers accelerated primary production, warming accelerated consumption and growth of Daphnia, and both factors speeded up successional dynamics driven by trophic feedbacks. Specifically, phytoplankton peaked and decreased earlier and Daphnia populations increased and peaked earlier at both shallower stratification and higher temperature. The timing of ciliate dynamics was unrelated to both factors. Volumetric peak densities of phytoplankton, ciliates and Daphnia in the surface layer were also unaffected by temperature but declined with stratification depth in parallel with light availability. The latter relationship vanished, however, when population sizes were integrated over the entire water column. Overall our results suggest that, integrated over the entire water column of a deep lake, surface warming and shallower stratification independently speed up spring successional events, whereas the magnitudes of phytoplankton and zooplankton spring peaks are less sensitive to these factors. Therefore, accelerated dynamics under warming need not lead to a trophic mismatch (given similar grazer inocula at the time of stratification). We emphasize that entire water column dynamics must be studied to estimate global warming effects on lake ecosystems.
  •  
4.
  • Winder, Monika, et al. (författare)
  • Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions
  • 2012
  • Ingår i: Marine Biology. - : Springer Science and Business Media LLC. - 0025-3162 .- 1432-1793. ; 159:11, s. 2491-2501
  • Tidskriftsartikel (refereegranskat)abstract
    • Shifts in the timing and magnitude of the spring plankton bloom in response to climate change have been observed across a wide range of aquatic systems. We used meta-analysis to investigate phenological responses of marine and freshwater plankton communities in mesocosms subjected to experimental manipulations of temperature and light intensity. Systems differed with respect to the dominant mesozooplankton (copepods in seawater and daphnids in freshwater). Higher water temperatures advanced the bloom timing of most functional plankton groups in both marine and freshwater systems. In contrast to timing, responses of bloom magnitudes were more variable among taxa and systems and were influenced by light intensity and trophic interactions. Increased light levels increased the magnitude of the spring peaks of most phytoplankton taxa and of total phytoplankton biomass. Intensified size-selective grazing of copepods in warming scenarios affected phytoplankton size structure and lowered intermediate (20-200 mu m)-sized phytoplankton in marine systems. In contrast, plankton peak magnitudes in freshwater systems were unaffected by temperature, but decreased at lower light intensities, suggesting that filter feeding daphnids are sensitive to changes in algal carrying capacity as mediated by light supply. Our analysis confirms the general shift toward earlier blooms at increased temperature in both marine and freshwater systems and supports predictions that effects of climate change on plankton production will vary among sites, depending on resource limitation and species composition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy