SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berggren Magnus Professor 1968 ) srt2:(2019)"

Sökning: WFRF:(Berggren Magnus Professor 1968 ) > (2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Che, Canyan, 1988-, et al. (författare)
  • Twinning Lignosulfonate with a Conducting Polymer via Counter-Ion Exchange for Large-Scale Electrical Storage
  • 2019
  • Ingår i: Advanced Sustainable Systems. - : Wiley-VCH Verlag. - 2366-7486. ; 3:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignosulfonate (LS) is a large-scale surplus product of the forest and paper industries, and has primarily been utilized as a low-cost plasticizer in making concrete for the construction industry. LS is an anionic redox-active polyelectrolyte and is a promising candidate to boost the charge capacity of the positive electrode (positrode) in redox-supercapacitors. Here, the physical-chemical investigation of how this biopolymer incorporates into the conducting polymer PEDOT matrix, of the positrode, by means of counter-ion exchange is reported. Upon successful incorporation, an optimal access to redox moieties is achieved, which provides a 63% increase of the resulting stored electrical charge by reversible redox interconversion. The effects of pH, ionic strength, and concentrations, of included components, on the polymer–polymer interactions are optimized to exploit the biopolymer-associated redox currents. Further, the explored LS-conducting polymer incorporation strategy, via aqueous synthesis, is evaluated in an up-scaling effort toward large-scale electrical energy storage technology. By using an up-scaled production protocol, integration of the biopolymer within the conducting polymer matrix by counter-ion exchange is confirmed and the PEDOT-LS synthesized through optimized strategy reaches an improved charge capacity of 44.6 mAh g−1. 
  •  
2.
  • Kim, Nara, 1985-, et al. (författare)
  • Electric transport properties in PEDOT thin films
  • 2019. - 4
  • Ingår i: Conjugated polymers. - Boca Raton : CRC Press. - 9780429190520 ; , s. 45-128
  • Bokkapitel (refereegranskat)abstract
    • In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.
  •  
3.
  • Fahlman, Mats, 1967-, et al. (författare)
  • Interfaces in organic electronics
  • 2019
  • Ingår i: Nature Reviews Materials. - : Nature Publishing Group. - 2058-8437. ; 4:10, s. 627-650
  • Forskningsöversikt (refereegranskat)abstract
    • Undoped, conjugated, organic molecules and polymers possess properties of semiconductors, including the electronic structure and charge transport, which can be readily tuned by chemical design. Moreover, organic semiconductors (OSs) can be n-doped or p-doped to become organic conductors and can exhibit mixed electronic and ionic conductivity. Compared with inorganic semiconductors and metals, organic (semi)conductors possess a unique feature: no insulating oxide forms on their surface when exposed to air. Thus, OSs form clean interfaces with many materials, including metals and other OSs. OS–metal and OS–OS interfaces have been intensely investigated over the past 30 years, from which a consistent theoretical description has emerged. Since the 2000s, increased attention has been paid to interfaces in organic electronics that involve dielectrics, electrolytes, ferroelectrics and even biological organisms. In this Review, we consider the central role of these interfaces in the function of organic electronic devices and discuss how the physico-chemical properties of the interfaces govern the interfacial transport of light, excitons, electrons and ions, as well as the transduction of electrons into the molecular language of cells.
  •  
4.
  • Mitraka, Evangelia, 1986-, et al. (författare)
  • Electrocatalytic Production of Hydrogen Peroxide with Poly(3,4-ethylenedioxythiophene) Electrodes
  • 2019
  • Ingår i: Advanced Sustainable Systems. - : Wiley-VCH Verlagsgesellschaft. - 2366-7486 .- 2366-7486. ; 3:2, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrocatalysis for energy‐efficient chemical transformations is a central concept behind sustainable technologies. Numerous efforts focus on synthesizing hydrogen peroxide, a major industrial chemical and potential fuel, using simple and green methods. Electrochemical synthesis of peroxide is a promising route. Herein it is demonstrated that the conducting polymer poly(3,4‐ethylenedioxythiophene), PEDOT, is an efficient and selective heterogeneous catalyst for the direct reduction of oxygen to hydrogen peroxide. While many metallic catalysts are known to generate peroxide, they subsequently catalyze decomposition of peroxide to water. PEDOT electrodes can support continuous generation of high concentrations of peroxide with Faraday efficiency remaining close to 100%. The mechanisms of PEDOT‐catalyzed reduction of O2 to H2O2 using in situ spectroscopic techniques and theoretical calculations, which both corroborate the existence of a chemisorbed reactive intermediate on the polymer chains that kinetically favors the selective reduction reaction to H2O2, are explored. These results offer a viable method for peroxide electrosynthesis and open new possibilities for intrinsic catalytic properties of conducting polymers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy