SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bernasconi G) srt2:(2020-2024)"

Sökning: WFRF:(Bernasconi G) > (2020-2024)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Khatri, C, et al. (författare)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
4.
  •  
5.
  • Santoro, V., et al. (författare)
  • HighNESS conceptual design report: Volume I
  • 2024
  • Ingår i: Journal of Neutron Research. - 1023-8166 .- 1477-2655. ; 25:3-4, s. 85-314
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Spallation Source, currently under construction in Lund, Sweden, is a multidisciplinary international laboratory. Once completed to full specifications, it will operate the world’s most powerful pulsed neutron source. Supported by a 3 million Euro Research and Innovation Action within the EU Horizon 2020 program, a design study (HighNESS) has been completed to develop a second neutron source located below the spallation target. Compared to the first source, designed for high cold and thermal brightness, the new source has been optimized to deliver higher intensity, and a shift to longer wavelengths in the spectral regions of cold (CN, 2–20 Å), very cold (VCN, 10–120 Å), and ultracold (UCN, >500 Å) neutrons. The second source comprises a large liquid deuterium moderator designed to produce CN and support secondary VCN and UCN sources. Various options have been explored in the proposed designs, aiming for world-leading performance in neutronics. These designs will enable the development of several new instrument concepts and facilitate the implementation of a high-sensitivity neutron-antineutron oscillation experiment (NNBAR). This document serves as the Conceptual Design Report for the HighNESS project, representing its final deliverable.
  •  
6.
  • Santoro, V., et al. (författare)
  • HighNESS conceptual design report: Volume II. the NNBAR experiment.
  • 2024
  • Ingår i: Journal of Neutron Research. - 1023-8166 .- 1477-2655. ; 25:3-4, s. 315-406
  • Tidskriftsartikel (refereegranskat)abstract
    • A key aim of the HighNESS project for the European Spallation Source is to enable cutting-edge particle physics experiments. This volume presents a conceptual design report for the NNBAR experiment. NNBAR would exploit a new cold lower moderator to make the first search in over thirty years for free neutrons converting to anti-neutrons. The observation of such a baryon-number-violating signature would be of fundamental significance and tackle open questions in modern physics, including the origin of the matter-antimatter asymmetry. This report shows the design of the beamline, supermirror focusing system, magnetic and radiation shielding, and anti-neutron detector necessary for the experiment. A range of simulation programs are employed to quantify the performance of the experiment and show how background can be suppressed. For a search with full background suppression, a sensitivity improvement of three orders of magnitude is expected, as compared with the previous search. Civil engineering studies for the NNBAR beamline are also shown, as is a costing model for the experiment.
  •  
7.
  • Hernández‑Morcillo, Monica, et al. (författare)
  • Scanning the solutions for the sustainable supply of forest ecosystem services in Europe
  • 2022
  • Ingår i: Sustainability Science. - : Springer Science and Business Media LLC. - 1862-4057 .- 1862-4065. ; 17:5, s. 2013-2029
  • Tidskriftsartikel (refereegranskat)abstract
    • Forests are key components of European multifunctional landscapes and supply numerous forest ecosystem services (FES) fundamental to human well-being. The sustainable provision of FES has the potential to provide responses to major societal challenges, such as climate change, biodiversity loss, or rural development. To identify suitable strategies for the future sustenance of FES, we performed a solution scanning exercise with a group of transdisciplinary forest and FES experts from diferent European regions. We identifed and prioritized ffteen major challenges hindering the balanced provision of multiple FES and identifed a series of potential solutions to tackle each of them. The most prominent challenges referred to the increased frequency and impacts of extreme weather events and the normative mindset regarding forest management. The respective solutions pointed to the promotion of forest resilience via climate-smart forestry and mainstreaming FES-orientedmanagement through a threefold strategy focusing on education, awareness raising, and networking. In a subsequent survey,most solutions were assessed as highly efective, transferable, monitorable, and with potential for being economically efcient. The implementation of the solutions could have synergistic efects when applying the notion of leverage points. Sevenemerging pathways towards the sustainable supply of FES have been identifed. These pathways build on each other and areorganized based on their potential for transformation: (1) shifting forest management paradigms towards pluralistic ecosystem valuation; (2) using integrated landscape approaches; (3) increasing forest resilience; (4) coordinating actions betweenforest-related actors; (5) increasing participation in forest planning and management; (6) continuous, open, and transparentknowledge integration; and (7) using incentive-based instruments to support regulating and cultural FES. These pathwayscan contribute to the implementation of the new EU Forestry Strategy to support the balanced supply of multiple FES.
  •  
8.
  • Opheim, G., et al. (författare)
  • 7T Epilepsy Task Force Consensus Recommendations on the Use of 7T MRI in Clinical Practice
  • 2021
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 96:7, s. 327-341
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying a structural brain lesion on MRI has important implications in epilepsy and is the most important factor that correlates with seizure freedom after surgery in patients with drug-resistant focal onset epilepsy. However, at conventional magnetic field strengths (1.5 and 3T), only approximately 60%-85% of MRI examinations reveal such lesions. Over the last decade, studies have demonstrated the added value of 7T MRI in patients with and without known epileptogenic lesions from 1.5 and/or 3T. However, translation of 7T MRI to clinical practice is still challenging, particularly in centers new to 7T, and there is a need for practical recommendations on targeted use of 7T MRI in the clinical management of patients with epilepsy. The 7T Epilepsy Task Force-an international group representing 21 7T MRI centers with experience from scanning over 2,000 patients with epilepsy-would hereby like to share its experience with the neurology community regarding the appropriate clinical indications, patient selection and preparation, acquisition protocols and setup, technical challenges, and radiologic guidelines for 7T MRI in patients with epilepsy. This article mainly addresses structural imaging; in addition, it presents multiple nonstructural MRI techniques that benefit from 7T and hold promise as future directions in epilepsy. Answering to the increased availability of 7T MRI as an approved tool for diagnostic purposes, this article aims to provide guidance on clinical 7T MRI epilepsy management by giving recommendations on referral, suitable 7T MRI protocols, and image interpretation.
  •  
9.
  • Santoro, V., et al. (författare)
  • DEVELOPMENT OF A HIGH INTENSITY NEUTRON SOURCE AT THE EUROPEAN SPALLATION SOURCE : THE HIGHNESS PROJECT
  • 2022
  • Ingår i: Proceedings of the 14th International Topical Meeting on Nuclear Applications of Accelerators, AccApp 2021, Embedded with the 2021 ANS Winter Meeting. - 9780894487842 ; , s. 11-20
  • Konferensbidrag (refereegranskat)abstract
    • The European Spallation Source (ESS), presently under construction in Lund, Sweden, is a multidisciplinary international laboratory that will operate the world’s most powerful pulsed neutron source. Supported by a 3M Euro Research and Innovation Action within the EU Horizon 2020 program, a design study (HighNESS) is now underway to develop a second neutron source below the spallation target. Compared to the first source, located above the spallation target and designed for high cold and thermal brightness, the new source will provide higher intensity, and a shift to longer wavelengths in the spectral regions of cold (2-20 Å), very cold (VCN, 10-120 Å), and ultra cold (UCN, > 500 Å) neutrons. The core of the second source will consist of a large liquid deuterium moderator to deliver a high flux of cold neutrons and to serve secondary VCN and UCN sources, for which different options are under study. The features of these new sources will boost several areas of condensed matter research and will provide unique opportunities in fundamental physics. Part of the HighNESS project is also dedicated to the development of future instruments that will make use of the new source and will complement the initial suite of instruments in construction at ESS. The HighNESS project started in October 2020. In this paper, the ongoing developments and the results obtained in the first year are described.
  •  
10.
  • Santoro, V., et al. (författare)
  • The HighNESS Project at the European Spallation Source : Current Status and Future Perspectives
  • 2024
  • Ingår i: Nuclear science and engineering. - 0029-5639 .- 1943-748X. ; 198:1, s. 31-63
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Spallation Source (ESS), presently under construction in Lund, Sweden, is a multidisciplinary international laboratory that, once completed at full specifications, will operate the world's most powerful pulsed neutron source. Supported by a 3 M Euro Research and Innovation Action within the European Union Horizon 2020 program, a design study (HighNESS) is now underway to develop a second neutron source located below the spallation target. Compared to the first source, which is located above the spallation target and designed for high cold and thermal brightness, the new source is being optimized to deliver higher intensity and a shift to longer wavelengths in the spectral regions of cold neutrons (CNs) (2 to 20 & Aring;), very cold neutrons (VCNs) (10 to 120 & Aring;), and ultracold neutrons (UCNs) (> 500 & Aring;). The second source consists of a large liquid deuterium moderator to deliver CNs and serve secondary VCN and UCN sources, for which different options are under study. These new sources will boost several areas of condensed matter research and will provide unique opportunities in fundamental physics. The HighNESS project is now entering its last year, and we are working toward the Conceptual Design Report of the ESS upgrade. In this paper, results obtained in the first 2 years, ongoing developments, and future perspectives are described.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy