SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berntsen P.) srt2:(2020-2023)"

Sökning: WFRF:(Berntsen P.) > (2020-2023)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Haoyuan, et al. (författare)
  • Diffraction data from aerosolized Coliphage PR772 virus particles imaged with the Linac Coherent Light Source
  • 2020
  • Ingår i: Scientific Data. - : NATURE RESEARCH. - 2052-4463. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 mu m x 1.7 mu m full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.
  •  
2.
  • Siriwardena, D. P., et al. (författare)
  • Probing the effect of Mg doping on triclinic Na2Mn3O7 transition metal oxide as cathode material for sodium-ion batteries
  • 2021
  • Ingår i: Electrochimica Acta. - : Elsevier Ltd. - 0013-4686 .- 1873-3859. ; 394
  • Tidskriftsartikel (refereegranskat)abstract
    • Triclinic Na2Mn3O7 has been identified as a promising material for high-capacity sodium-ion batteries. However, the knowledge on the effect of doping of metal ions and structural transformations of Na2Mn3O7 during dis(charge) is limited. Integration of alkali metal-ions, specially Mg2+ can enhance the electrochemical properties in transition metal oxides. Herein, a series of Mg2+ doped triclinic Na2Mn3O7 cathode materials was explored for the first time. Electrochemical analysis revealed that Mg2+ improves specific capacities, and rate capabilities. Ex situ X-ray diffraction (XRD) and Galvanostatic charge discharge cycling (GCD) showed that the triclinic phase reversibly converts into two monoclinic phases at high Na+ insertion levels. Na+ extraction at high potentials is supported by another biphasic region which converts to a major triclinic phase at the end of the charge. GCD, cyclic voltammetry (CV) and ex situ X-ray absorption spectroscopy (XAS) documented that the capacity mainly evolved through a Mn4+/3+ redox couple and a reversible O2-/n− redox reaction. CV and Galvanostatic intermittent titration techniques (GITT) showed that Mg2+ reduces the Na+-vacancy ordering and improves the Na+ diffusion. The 2 mol.% Mg-doped material exhibited a high specific capacity of 143 mAh/g after 30 cycles and a rate capability of 93 mAh/g (at 500 mA/g). GCD analysis demonstrated that O2-/n− redox is remarkably stable up to at least 90 cycles. Full cells made using the 0.5 mol.% Mg-doped material displayed a promising discharge specific capacity of 80 mAh/g. The effects of cation doping into the complex crystal structures, phase transformations during Na+ de(intercalation) and the importance of O2-/n− redox for achieving high capacities were uncovered. The findings of this work will guide the design of novel cathode materials for sodium-ion batteries. © 2021
  •  
3.
  • Berntsen, P., et al. (författare)
  • Complex modulus and compliance for airway smooth muscle cells
  • 2020
  • Ingår i: Physical Review E. - 2470-0045 .- 2470-0053. ; 101:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A cell can be described as a complex viscoelastic material with structural relaxations that is modulated by thermal and chemically nonequilibrium processes. Tissue morphology and function rely upon cells' physical responses to mechanical force. We measured the frequency-dependent mechanical relaxation response of adherent human airway smooth muscle cells under adenosine triphosphate (ATP) depletion and normal ATP conditions. The frequency dependence of the complex compliance J* and modulus G* was measured over the frequencies 10(-1) < f < 10(3) Hz at selected temperatures between 4 < T < 54 degrees C. Our results show characteristic relaxation features which can be interpreted by the mode-coupling theory (MCT) of viscoelastic liquids. We analyze the shape of the spectra in terms of a so-called A(4) scenario with logarithmic scaling laws. Characteristic timescales tau(beta) and tau(alpha) appear with corresponding energy barriers E-beta approximate to (10-20)k(B) T and E-alpha approximate to (20-30)k(B)T. We demonstrate that cells are close to a glass transition. We find that the cell becomes softer around physiological temperatures, where its surface structure is more liquid-like with a plateau modulus around 0.1-0.8 kPa compared with the more solid-like interior cytoskeletal structures with a plateau modulus 1-15 kPa. Corresponding values for the viscosity are 10(2)-10(3) Pa s for the surface structures closer to the membrane and 10(4)-10(6) Pa s for the core cytoskeletal structures.
  •  
4.
  • Dods, Robert, 1989, et al. (författare)
  • Ultrafast structural changes within a photosynthetic reaction centre.
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 589:7841, s. 310-314
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.
  •  
5.
  • Li, Cong, et al. (författare)
  • Coexistence of two intertwined charge density waves in a kagome system
  • 2022
  • Ingår i: Physical Review Research. - : American Physical Society (APS). - 2643-1564. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Materials with a kagome lattice structure display a wealth of intriguing magnetic properties due to their geometric frustration and intrinsically flat band structure. Recently, topological and superconducting states have also been observed in kagome systems. The kagome lattice may also host a "breathing" mode that leads to charge density wave (CDW) states, if there is strong electron-phonon coupling, electron-electron interaction, or external excitation of the material. This "breathing" mode can give rise to candidate distortions such as the star of David (SoD) or its inverse structure [trihexagonal (TrH)]. To date, in most materials, only a single type of distortion has been observed. Here, we present angle-resolved photoemission spectroscopy measurements on the kagome superconductor CsV3Sb5 at multiple temperatures and photon energies to reveal the nature of the CDW in this material. It is shown that CsV3Sb5 displays two intertwined CDW orders corresponding to the SoD and TrH distortions. These two distinct types of distortions are stacked along the c direction to form a three-dimensional CDW order where the two 2-fold CDWs are phase shifted along the c axis. The presented results provide not only key insights into the nature of the unconventional CDW order in CsV3Sb5, but also an important reference for further studies on the relationship between the CDW and superconducting order.
  •  
6.
  • Wells, Daniel J., et al. (författare)
  • Observations of phase changes in monoolein during high viscous injection
  • 2022
  • Ingår i: Journal of Synchrotron Radiation. - : International Union Of Crystallography. - 0909-0495 .- 1600-5775. ; 29:3, s. 602-614
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial crystallography of membrane proteins often employs high-viscosity injectors (HVIs) to deliver micrometre-sized crystals to the X-ray beam. Typically, the carrier medium is a lipidic cubic phase (LCP) media, which can also be used to nucleate and grow the crystals. However, despite the fact that the LCP is widely used with HVIs, the potential impact of the injection process on the LCP structure has not been reported and hence is not yet well understood. The self-assembled structure of the LCP can be affected by pressure, dehydration and temperature changes, all of which occur during continuous flow injection. These changes to the LCP structure may in turn impact the results of X-ray diffraction measurements from membrane protein crystals. To investigate the influence of HVIs on the structure of the LCP we conducted a study of the phase changes in monoolein/water and monoolein/buffer mixtures during continuous flow injection, at both atmospheric pressure and under vacuum. The reservoir pressure in the HVI was tracked to determine if there is any correlation with the phase behaviour of the LCP. The results indicated that, even though the reservoir pressure underwent (at times) significant variation, this did not appear to correlate with observed phase changes in the sample stream or correspond to shifts in the LCP lattice parameter. During vacuum injection, there was a three-way coexistence of the gyroid cubic phase, diamond cubic phase and lamellar phase. During injection at atmospheric pressure, the coexistence of a cubic phase and lamellar phase in the monoolein/water mixtures was also observed. The degree to which the lamellar phase is formed was found to be strongly dependent on the co-flowing gas conditions used to stabilize the LCP stream. A combination of laboratory-based optical polarization microscopy and simulation studies was used to investigate these observations.
  •  
7.
  • Xu, Ke-Jun, et al. (författare)
  • Bogoliubov quasiparticle on the gossamer Fermi surface in electron-doped cuprates
  • 2023
  • Ingår i: Nature Physics. - 1745-2473 .- 1745-2481. ; 19:12, s. 1834-1840
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron-doped cuprates consistently exhibit strong antiferromagnetic correlations, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations showed that although antiferromagnetic spin fluctuations create the largest pseudogap at hot spots in momentum space, the superconducting gap is also maximized at these locations. This presented a paradox for spin-fluctuation-mediated pairing: Cooper pairing is strongest at momenta where the normal-state low-energy spectral weight is most suppressed. Here we investigate this paradox and find evidence that a gossamer—meaning very faint—Fermi surface can provide an explanation for these observations. We study Nd2–xCexCuO4 using angle-resolved photoemission spectroscopy and directly observe the Bogoliubov quasiparticles. First, we resolve the previously observed reconstructed main band and the states gapped by the antiferromagnetic pseudogap around the hot spots. Within the antiferromagnetic pseudogap, we also observe gossamer states with distinct dispersion, from which coherence peaks of Bogoliubov quasiparticles emerge below the superconducting critical temperature. Moreover, the direct observation of a Bogoliubov quasiparticle permits an accurate determination of the superconducting gap, yielding a maximum value an order of magnitude smaller than the pseudogap, establishing the distinct nature of these two gaps. We propose that orientation fluctuations in the antiferromagnetic order parameter are responsible for the gossamer states. 
  •  
8.
  • Xu, Ke Jun, et al. (författare)
  • Bogoliubov quasiparticle on the gossamer Fermi surface in electron-doped cuprates
  • 2023
  • Ingår i: Nature Physics. - : Springer Nature. - 1745-2473 .- 1745-2481. ; 19:12, s. 1834-1840
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron-doped cuprates consistently exhibit strong antiferromagnetic correlations, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations showed that although antiferromagnetic spin fluctuations create the largest pseudogap at hot spots in momentum space, the superconducting gap is also maximized at these locations. This presented a paradox for spin-fluctuation-mediated pairing: Cooper pairing is strongest at momenta where the normal-state low-energy spectral weight is most suppressed. Here we investigate this paradox and find evidence that a gossamer—meaning very faint—Fermi surface can provide an explanation for these observations. We study Nd2–xCexCuO4 using angle-resolved photoemission spectroscopy and directly observe the Bogoliubov quasiparticles. First, we resolve the previously observed reconstructed main band and the states gapped by the antiferromagnetic pseudogap around the hot spots. Within the antiferromagnetic pseudogap, we also observe gossamer states with distinct dispersion, from which coherence peaks of Bogoliubov quasiparticles emerge below the superconducting critical temperature. Moreover, the direct observation of a Bogoliubov quasiparticle permits an accurate determination of the superconducting gap, yielding a maximum value an order of magnitude smaller than the pseudogap, establishing the distinct nature of these two gaps. We propose that orientation fluctuations in the antiferromagnetic order parameter are responsible for the gossamer states.
  •  
9.
  • Yuan, Ya Hua, et al. (författare)
  • Angle-resolved photoemission spectroscopy view on the nature of Ce 4f electrons in the antiferromagnetic Kondo lattice CePd5Al2
  • 2021
  • Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9969 .- 2469-9950. ; 103:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We report an angle-resolved photoemission spectroscopy study of the antiferromagnetic Kondo lattice CePd5Al2, focusing on the quasi-two-dimensional k-space nature of its Fermi surface and, tuning photon energy to the Ce 4d-4f on-resonance transition, the hybridization of the Ce 4f state. A strong shoulder feature on the f0 peak was detected, suggesting hybridization between conduction and f bands. On-resonance spectra revealed narrow, yet hybridized quasiparticle bands with sharp peaks and ∼ 9 meV energy dispersion near the Fermi energy EF. The observed dispersive hybridized f band can be well described by a hybridization-band picture based on the periodic Anderson model (PAM). Hence, the 4f electrons in CePd5Al2 display a dual nature, with both localized and itinerant features, but with dominantly localized character.
  •  
10.
  • Zhang, Chen, et al. (författare)
  • Antiferromagnetic order in Kondo lattice CePd5Al2 possibly driven by nesting
  • 2023
  • Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9950 .- 2469-9969. ; 108:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the electronic structure of the antiferromagnetic Kondo lattice CePd5Al2 using high-resolution angle-resolved photoemission spectroscopy. The experimentally determined band structure of the conduction electrons is predominated by the Pd 4d character. It contains multiple hole and electron Fermi pockets, in good agreement with density functional theory calculations. The Fermi surface is folded over Q0=(0,0,1), manifested by Fermi surface reconstruction and band folding. Our results suggest that Fermi surface nesting drives the formation of antiferromagnetic order in CePd5Al2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (10)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Tjernberg, Oscar, 19 ... (4)
Oppeneer, Peter M. (2)
Månsson, Martin, As. ... (2)
Rusz, Jan, 1979- (2)
Boutet, Sébastien (2)
Barty, Anton (2)
visa fler...
Zhang, Chen (2)
Hunter, Mark S. (2)
Kirian, Richard A. (2)
Wang, T. (1)
Dubal, D. P. (1)
Swenson, Jan, 1966 (1)
Zhang, C. (1)
Thiagarajan, Balasub ... (1)
Katona, Gergely, 197 ... (1)
Ahlberg Gagnér, Vikt ... (1)
Groenhof, Gerrit (1)
Caleman, Carl (1)
Sierra, Raymond G. (1)
Hunter, Mark (1)
Mancuso, Adrian P. (1)
Williams, Garth J. (1)
Liu, Hao (1)
Álvarez, Roberto (1)
Wang, Yang (1)
Westenhoff, Sebastia ... (1)
Davidsson, Jan (1)
Neutze, Richard, 196 ... (1)
Johansson, Linda C, ... (1)
Andersson, Rebecka, ... (1)
Safari, Cecilia, 198 ... (1)
Dods, Robert, 1989 (1)
Båth, Petra, 1988 (1)
Bosman, Robert, 1991 (1)
Brändén, Gisela, 197 ... (1)
Dahl, Peter, 1965 (1)
Martin, Andrew V. (1)
Svenda, Martin (1)
Hantke, Max (1)
Bielecki, Johan (1)
Chapman, Henry N. (1)
Seibert, Marvin (1)
Hajdu, J (1)
Nettelblad, Carl (1)
Arnlund, David (1)
DePonte, Daniel P. (1)
Frank, Matthias (1)
Liang, Mengning (1)
Sierra, Raymond (1)
Wickstrand, Cecilia (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (6)
Uppsala universitet (5)
Chalmers tekniska högskola (3)
Göteborgs universitet (2)
Stockholms universitet (2)
Lunds universitet (1)
visa fler...
Mittuniversitetet (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy