SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bessell M.S.) srt2:(2015-2019)"

Sökning: WFRF:(Bessell M.S.) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andreoni, I., et al. (författare)
  • Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes
  • 2017
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Forskningsöversikt (refereegranskat)abstract
    • The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (similar to 2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
  •  
2.
  • Da Costa, G. S., et al. (författare)
  • The SkyMapper DR1.1 search for extremely metal-poor stars
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 489:4, s. 5900-5918
  • Tidskriftsartikel (refereegranskat)abstract
    • We present and discuss the results of a search for extremely metal-poor stars based on photometry from data release DR1.1 of the SkyMapper imaging survey of the southern sky. In particular, we outline our photometric selection procedures and describe the low-resolution (R approximate to 3000) spectroscopic follow-up observations that are used to provide estimates of effective temperature, surface gravity, and metallicity ([Fe/H]) for the candidates. The selection process is very efficient: of the 2618 candidates with low-resolution spectra that have photometric metallicity estimates less than or equal to -2.0, 41 per cent have [Fe/H] <= -2.75 and only approximately seven per cent have [Fe/H] > -2.0 dex. The most metal-poor candidate in the sample has [Fe/H] < -4.75 and is notably carbon rich. Except at the lowest metallicities ([Fe/H] < -4), the stars observed spectroscopically are dominated by a 'carbon-normal' population with [C/Fe](1D, LTE) <= +1 dex. Consideration of the A(C)(1D, LTE) versus [Fe/H](1D, LTE) diagram suggests that the current selection process is strongly biased against stars with A(C)(1D, LTE) > 7.3 (predominantly CEMP-s) while any bias against stars with A(C)(1D, LTE) < 7.3 and [C/Fe](1D, LTE) > +1 (predominantly CEMP-no) is not readily quantifiable given the uncertainty in the SkyMapper v-band DR1.1 photometry. We find that the metallicity distribution function of the observed sample has a power-law slope of Delta(Log N)/Delta[Fe/H] = 1.5 +/- 0.1 dex per dex for -4.0 <= [Fe/H] <= -2.75, but appears to drop abruptly at [Fe/H] approximate to -4.2, in line with previous studies.
  •  
3.
  • Howes, L. M., et al. (författare)
  • Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 527:7579, s. 484-487
  • Tidskriftsartikel (refereegranskat)abstract
    • The first stars are predicted to have formed within 200 million years after the Big Bang(1), initiating the cosmic dawn. A true first star has not yet been discovered, although stars(2-4) with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time(5,6). The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years(7), leading to a dearth of early, metal-poor stars(8,9). Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.
  •  
4.
  • Marino, A. F., et al. (författare)
  • Keck HIRES spectroscopy of SkyMapper commissioning survey candidate extremely metal-poor stars
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 485:4, s. 5153-5167
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from the analysis of high-resolution spectra obtained with the Keck HIRES spectrograph for a sample of 17 candidate extremely metal-poor (EMP) stars originally selected from commissioning data obtained with the SkyMapper telescope. Fourteen of the stars have not been observed previously at high dispersion. Three have [Fe/H] <= -3.0, while the remainder, with two more metal-rich exceptions, have -3.0 <= [Fe/H] <= -2.0 dex. Apart from Fe, we also derive abundances for the elements C, N, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, and Zn, and for n-capture elements Sr, Ba, and Eu. None of the current sample of stars is found to be carbon-rich. In general, our chemical abundances follow previous trends found in the literature, although we note that two of the most metal-poor stars show very low [Ba/Fe] (similar to-1.7) coupled with low [Sr/Ba] (similar to-0.3). Such stars are relatively rare in the Galactic halo. One further star, and possibly two others, meet the criteria for classification as a r-I star. This study, together with that of Jacobson et al. (2015), completes the outcomes of the SkyMapper commissioning data survey for EMP stars.
  •  
5.
  • Nordlander, T., et al. (författare)
  • The lowest detected stellar Fe abundance : the halo star SMSS J160540.18-144323.1
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 488:1, s. L109-L113
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of SMSS J160540.18-144323.1, a new ultra metal-poor halo star discovered with the SkyMapper telescope. We measure [Fe/H] = -6.2 +/- 0.2 (1D LTE), the lowest ever detected abundance of iron in a star. The star is strongly carbon-enhanced, [C/Fe] = 3.9 +/- 0.2, while other abundances are compatible with an alpha-enhanced solar-like pattern with [Ca/Fe] = 0.4 +/- 0.2, [Mg/Fe] = 0.6 +/- 0.2, [Ti/Fe] = 0.8 +/- 0.2, and no significant s- or r-process enrichment, [Sr/Fe] < 0.2 and [Ba/Fe] < 1.0 (3 sigma limits). Population III stars exploding as fallback supernovae may explain both the strong carbon enhancement and the apparent lack of enhancement of odd-Z and neutron-capture element abundances. Grids of supernova models computed for metal-free progenitor stars yield good matches for stars of about 10 M circle dot imparting a low kinetic energy on the supernova ejecta, while models for stars more massive than roughly 20 M circle dot are incompatible with the observed abundance pattern.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy