SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bhatti Muhammad Ali) srt2:(2019)"

Search: WFRF:(Bhatti Muhammad Ali) > (2019)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bhatti, Muhammad Ali, et al. (author)
  • Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange
  • 2019
  • In: Ceramics International. - Oxford : Elsevier. - 0272-8842 .- 1873-3956. ; 45:17, Part B, s. 23289-23297
  • Journal article (peer-reviewed)abstract
    • In this study, the doped ZnO nanorods with silver (Ag) as photosensitive material are prepared by the solvothermal method. The structural and optical characterization is carried out by the scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy and UV–visible spectroscopy. The use of Ag as dopant did not alter the morphology of ZnO except sample 4 which has flower like morphology. The Ag, Zn and O are the main constituent of doped materials. The XRD revealed a hexagonal phase for ZnO and cubic phase for silver and confirmed the successful doping of Ag. The photocatalytic activity of Ag doped ZnO nanorods was investigated for the photo degradation of methyl orange. The photocatalytic measurements show that 88% degradation of methyl orange by the sample 4 within the 2 h of UV light treatment (365 nm) is significant advancement in the photocatalyst and provide the inexpensive and promising materials for the photochemical applications. © 2019 Elsevier Ltd and Techna Group S.r.l.
  •  
2.
  • Hassan, Mohsan, et al. (author)
  • Effects of Cu–Ag hybrid nanoparticles on the momentum and thermal boundary layer flow over the wedge
  • 2019
  • In: Proceedings of the Institution of mechanical engineers. Part E, journal of process mechanical engineering. - : Sage Publications. - 0954-4089 .- 2041-3009. ; 233:5, s. 1128-1136
  • Journal article (peer-reviewed)abstract
    • In this work, the effects of hybrid nanoparticles on the momentum and thermal boundary layers as well as flow characteristics and thermal performance of the hybrid nanofluid are investigated over the wedge. The fluid in the enclosure is water containing hybrid nanoparticles Cu–Ag. The physical model of homogenous hybrid nanofluid is derived using the elementary equations of thermo-hydrodynamic and co-relation's model of a mixture that supports the effective physical features. The results are calculated to measure the effects of nanoparticle concentration on thermal and momentum boundary layers and displayed in graphs for discussions. In addition, the effects of nanoparticles concentration and different compositions of hybrid nanoparticles on temperature and velocity profiles, physical properties, skin friction, and convective heat transfer coefficient are deliberated through graphs and tables. To check its heat transfer performance, a comparison of hybrid nanofluid is made between the base fluid and single material nanofluids. It is found that the efficiency of hybrid nanofluids as a heat transfer fluid is much more than conventional fluids or single nanoparticles-based nanofluids. These results in terms of boundary layers phenomena, heat transfer performance, and temperature and velocity profiles under hybrid nanomaterial could help chemical engineers to design the critical equipment in a process industry such as heat exchangers and pumps and others.
  •  
3.
  • Mugheri, Abdul Qayoom, et al. (author)
  • Efficient tri-metallic oxides NiCo2O4/CuO for the oxygen evolution reaction
  • 2019
  • In: RSC ADVANCES. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 9:72, s. 42387-42394
  • Journal article (peer-reviewed)abstract
    • In this study, a simple approach was used to produce nonprecious, earth abundant, stable and environmentally friendly NiCo2O4/CuO composites for the oxygen evolution reaction (OER) in alkaline media. The nanocomposites were prepared by a low temperature aqueous chemical growth method. The morphology of the nanostructures was changed from nanowires to porous structures with the addition of CuO. The NiCo2O4/CuO composite was loaded onto a glassy carbon electrode by the drop casting method. The addition of CuO into NiCo2O4 led to reduction in the onset potential of the OER. Among the composites, 0.5 grams of CuO anchored with NiCo2O4 (sample 2) demonstrated a low onset potential of 1.46 V vs. a reversible hydrogen electrode (RHE). A current density of 10 mA cm(-2) was achieved at an over-potential of 230 mV and sample 2 was found to be durable for 35 hours in alkaline media. Electrochemical impedance spectroscopy (EIS) indicated a small charge transfer resistance of 77.46 ohms for sample 2, which further strengthened the OER polarization curves and indicates the favorable OER kinetics. All of the obtained results could encourage the application of sample 2 in water splitting batteries and other energy related applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view