SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Biber Björn 1944) srt2:(2010-2014)"

Sökning: WFRF:(Biber Björn 1944) > (2010-2014)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ahlström, Katarina, 1966, et al. (författare)
  • Exogenous carbon monoxide does not affect cell membrane energy availability assessed by sarcolemmal calcium fluxes during myocardial ischaemia-reperfusion in the pig
  • 2011
  • Ingår i: European Journal of Anaesthesiology. - 0265-0215 .- 1365-2346. ; 28:5, s. 356-362
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon monoxide is thought to be cytoprotective and may hold therapeutic promise for mitigating ischaemic injury. The purpose of this study was to test low-dose carbon monoxide for protective effects in a porcine model of acute myocardial ischaemia and reperfusion. In acute open-thorax experiments in anaesthetised pigs, pretreatment with low-dose carbon monoxide (5% increase in carboxyhaemoglobin) was conducted for 120 min before localised ischaemia (45 min) and reperfusion (60 min) was performed using a coronary snare. Metabolic and injury markers were collected by microdialysis sampling in the ventricular wall. Recovery of radio-marked calcium delivered locally by microperfusate was measured to assess carbon monoxide treatment effects during ischaemia/reperfusion on the intracellular calcium pool. Coronary occlusion and ischaemia/reperfusion were analysed for 16 animals (eight in each group). Changes in glucose, lactate and pyruvate from the ischaemic area were observed during ischaemia and reperfusion interventions, though there was no difference between carbon monoxide-treated and control groups during ischaemia or reperfusion. Similar results were observed for glycerol and microdialysate Ca-45(2+) recovery. These findings show that a relatively low and clinically relevant dose of carbon monoxide did not seem to provide acute protection as indicated by metabolic, energy-related and injury markers in a porcine myocardial ischaemia/reperfusion experimental model. We conclude that protective effects of carbon monoxide related to ischaemia/reperfusion either require higher doses of carbon monoxide or occur later after reperfusion than the immediate time frame studied here. More study is needed to characterise the mechanism and time frame of carbon monoxide-related cytoprotection.
  •  
3.
  • Block, Linda, et al. (författare)
  • A new concept affecting restoration of inflammation-reactive astrocytes.
  • 2013
  • Ingår i: Neuroscience. - : Elsevier BV. - 1873-7544 .- 0306-4522. ; 250, s. 536-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-lasting pain may partly be a consequence of ongoing neuroinflammation, in which astrocytes play a significant role. Following noxious stimuli, increased inflammatory receptor activity, influences in Na(+)/K(+)-ATPase activity and actin filament organization occur within the central nervous system. In astrocytes, the Ca(2+) signaling system, Na(+) transporters, cytoskeleton, and release of pro-inflammatory cytokines change during inflammation. The aim of this study was to restore these cell parameters in inflammation-reactive astrocytes. We found that the combination of (1) endomorphin-1, an opioid agonist that stimulates the Gi/o protein of the μ-opioid receptor; (2) naloxone, an opioid antagonist that inhibits the Gs protein of the μ-opioid receptor at ultralow concentrations; and (3) levetiracetam, an anti-epileptic agent that counteracts the release of IL-1β, managed to activate the Gi/o protein and Na(+)/K(+)-ATPase activity, inhibit the Gs protein, and decrease the release of IL-1β. The cell functions of astrocytes in an inflammatory state were virtually restored to their normal non-inflammatory state and it could be of clinical significance and may be useful for the treatment of long-term pain.
  •  
4.
  • Block, Linda, et al. (författare)
  • Naloxone in ultralow concentration restores endomorphin-1-evoked Ca(2+) signaling in lipopolysaccharide pretreated astrocytes.
  • 2012
  • Ingår i: Neuroscience. - : Elsevier BV. - 1873-7544 .- 0306-4522. ; 205, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term pain is a disabling condition that affects thousands of people. Pain may be sustained for a long time even after the physiological trigger has resolved. Possible mechanisms for this phenomenon include low-grade inflammation in the CNS. Astrocytes respond to inflammatory stimuli and may play an important role as modulators of the inflammatory response in the nervous system. This study aimed first to assess how astrocytes in a primary culture behave when exposed to the endogenous μ-opioid receptor agonist endomorphin-1 (EM-1), in a concentration-dependent manner, concerning intracellular Ca(2+) responses. EM-1 stimulated the μ-opioid receptor from 10(-15) M up to 10(-4) M with increasing intensity, usually reflected as one peak at low concentrations and two peaks at higher concentrations. Naloxone, pertussis toxin (PTX), or the μ-opioid receptor antagonists CTOP did not totally block the EM-1-evoked Ca(2+) responses. However, a combination of ultralow concentration naloxone (10(-12) M) and PTX (100 ng/ml) totally blocked the EM-1-evoked Ca(2+) responses. This suggests that ultralow (picomolar) concentrations of naloxone should block the μ-opioid receptor coupled G(s) protein, and that PTX should block the μ-opioid receptor coupled G(i/o) protein. The second aim was to investigate exposure of astrocytes with the inflammatory agent lipopolysaccharide (LPS). After 4 h of LPS incubation, the EM-1-evoked Ca(2+) transients were attenuated, and after 24 h of LPS incubation, the EM-1-evoked Ca(2+) transients were oscillated. To restore the EM-1-evoked Ca(2+) transients, naloxone was assessed as a proposed anti-inflammatory substance. In ultralow picomolar concentration, naloxone demonstrated the ability to restore the Ca(2+) transients.
  •  
5.
  • Block, Linda, et al. (författare)
  • Ultralow concentrations of bupivacaine exert anti-inflammatory effects on inflammation-reactive astrocytes.
  • 2013
  • Ingår i: The European journal of neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 38:11, s. 3669-3678
  • Tidskriftsartikel (refereegranskat)abstract
    • Bupivacaine is a widely used, local anesthetic agent that blocks voltage-gated Na(+) channels when used for neuro-axial blockades. Much lower concentrations of bupivacaine than in normal clinical use, <10(-8) m, evoked Ca(2+) transients in astrocytes from rat cerebral cortex, that were inositol trisphosphate receptor-dependent. We investigated whether bupivacaine exerts an influence on the Ca(2+) signaling and interleukin-1β (IL-1β) secretion in inflammation-reactive astrocytes when used at ultralow concentrations, <10(-8) m. Furthermore, we wanted to determine if bupivacaine interacts with the opioid-, 5-hydroxytryptamine- (5-HT) and glutamate-receptor systems. With respect to the μ-opioid- and 5-HT-receptor systems, bupivacaine restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. With respect to the glutamate-receptor system, bupivacaine, in combination with an ultralow concentration of the μ-opioid receptor antagonist naloxone and μ-opioid receptor agonists, restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. Ultralow concentrations of bupivacaine attenuated the inflammation-induced upregulation of IL-1β secretion. The results indicate that bupivacaine interacts with the opioid-, 5-HT- and glutamate-receptor systems by affecting Ca(2+) signaling and IL-1β release in inflammation-reactive astrocytes. These results suggest that bupivacaine may be used at ultralow concentrations as an anti-inflammatory drug, either alone or in combination with opioid agonists and ultralow concentrations of an opioid antagonist.
  •  
6.
  • Forshammar, Johan, et al. (författare)
  • Anti-inflammatory substances can influence some glial cell types but not others.
  • 2013
  • Ingår i: Brain research. - : Elsevier BV. - 1872-6240 .- 0006-8993. ; 1539, s. 34-40
  • Tidskriftsartikel (refereegranskat)abstract
    • In rat microglial enriched cultures, expressing Toll-like receptor 4, we studied cytokine release after exposure with 1ng/ml LPS for 0.5-24h. Dexamethasone and corticosterone exposure served as controls. We focused on whether naloxone, ouabain, and bupivacaine, all agents with reported anti-inflammatory effects on astrocytes, could affect the release of TNF-α and IL-1β in microglia. Our results show that neither ultralow (10(-12)M) nor high (10(-6)M) concentrations of these agents had demonstrable effects on cytokine release in microglia. The results indicate that anti-inflammatory substances exert specific influences on different glial cell types. Astrocytes seem to be functional targets for anti-inflammatory substances while microglia respond directly to inflammatory stimuli and are thus more sensitive to anti-inflammatory substances like corticoids. The physiological relevance might be that astrocyte dysfunction influences neuronal signalling both due to direct disturbance of astrocyte functions and in the communication within the astrocyte networks. When the signalling between astrocytes is working, then microglia produce less pro-inflammatory cytokines.
  •  
7.
  • Forshammar, Johan, et al. (författare)
  • Naloxone and Ouabain in Ultralow Concentrations Restore Na+/K+-ATPase and Cytoskeleton in Lipopolysaccharide-treated Astrocytes.
  • 2011
  • Ingår i: The Journal of biological chemistry. - 1083-351X. ; 286:36, s. 31586-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Astrocytes respond to inflammatory stimuli and may be important modulators of the inflammatory response in the nervous system. This study aimed first to assess how astrocytes in primary culture behave in response to inflammatory stimuli concerning intracellular Ca(2+) responses, expression of Toll-like receptor 4 (TLR4), Na(+)/K(+)-ATPase, actin filament organization, and expression of cytokines. In a cell culture model with lipopolysaccharide (LPS), astrocyte response was assessed first in the acute phase and then after incubation with LPS for 1-48 h. The concentration curve for LPS-stimulated Ca(2+) responses was bell-shaped, and the astrocytes expressed TLR4, which detects LPS and evokes intracellular Ca(2+) transients. After a long incubation with LPS, TLR4 was up-regulated, LPS-evoked Ca(2+) transients were expressed as oscillations, Na(+)/K(+)-ATPase was down-regulated, and the actin filaments were disorganized. Interleukin-1β (IL-1β) release was increased after 24 h in LPS. A second aim was to try to restore the LPS-induced changes in astrocytes with substances that may have dose-dependent anti-inflammatory properties. Naloxone and ouabain were tested separately in ultralow or high concentrations. Both substances evoked intracellular Ca(2+) transients for all of the concentrations from 10(-15) up to 10(-4) m. Neither substance blocked the TLR4-evoked Ca(2+) responses. Naloxone and ouabain prevented the LPS-induced down-regulation of Na(+)/K(+)-ATPase and restored the actin filaments. Ouabain, in addition, reduced the IL-1β release from reactive astrocytes. Notably, ultralow concentrations (10(-12) m) of naloxone and ouabain showed these qualities. Ouabain seems to be more potent in these effects of the two tested substances.
  •  
8.
  • Hallén, Katarina, et al. (författare)
  • Transcutaneous electrical nerve stimulation induces vasodilation in healthy controls but not in refractory angina patients.
  • 2010
  • Ingår i: Journal of pain and symptom management. - : Elsevier BV. - 1873-6513 .- 0885-3924. ; 40:1, s. 95-101
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Transcutaneous electrical nerve stimulation (TENS) is an effective treatment option to relieve ischemic pain in refractory angina pectoris (RAP). In healthy persons, TENS enhances local blood flow, but the mechanism responsible for the anti-ischemic effect in RAP seems to be different. OBJECTIVE: The aim of the present investigation was to compare the difference in blood flow and vasodilatory response to TENS between angina patients and healthy controls and evaluate how vascular response in these groups is affected by amperage dosage above and below motor threshold levels. METHODS: Our study evaluated upper limb vascular responses to low- and high-dose TENS (below and above motor threshold) in RAP patients compared with healthy controls. TENS was applied on the nondominating forearm. Forearm blood flow (FBF) was measured by venous occlusion plethysmography. Forearm vascular resistance (FVR) was determined (mean arterial pressure [MAP]/FBF). Measurements were done during baseline, low-dose TENS, high-dose TENS, and during recovery. RESULTS: A significant dose-dependent increase in FBF in response to TENS stimulation was seen in controls (n=18) but not in RAP (n=23) (P=0.008). There was no significant difference in FVR ratio (FVR(stim)/FVR(ctrl)) between control (n=7) and RAP (n=23) groups at low dose (controls, 5.7+/-21%; RAP, 9.7+/-20%) or recovery (controls, -4.6+19%; RAP, 5.9+25%). High-dose TENS resulted in a significantly reduced FVR ratio (-16.8+/-11%) in controls (n=7) compared with RAP (1.6+/-32%, n=23) (P=0.02). CONCLUSION: High-dose TENS induces forearm vasodilation in healthy subjects but not in patients with RAP. These findings suggest that TENS has different vascular effects in patients with severe coronary artery disease compared with healthy controls.
  •  
9.
  • Lundborg, Christopher, 1965, et al. (författare)
  • Glial cell line-derived neurotrophic factor is increased in cerebrospinal fluid but decreased in blood during long-term pain.
  • 2010
  • Ingår i: Journal of Neuroimmunology. - : Elsevier BV. - 1872-8421 .- 0165-5728. ; 220:1-2, s. 108-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Glial cell line-derived neurotrophic factor (GDNF) is involved in inflammation and pain, roles which remain to be delineated clinically. We aimed to evaluate the role of central nervous and peripheral GDNF in long-term pain patients and in controls by analysing intrathecal and blood concentrations of GDNF. Simultaneous measurements of pro-inflammatory cytokines IL-1beta, TNF-alpha and IL-6, anti-inflammatory cytokine IL-10 and chemokine IL-8 served to define inflammatory responses. Generally, blood levels of GDNF were higher than corresponding intrathecal levels. Pain was associated with levels of GDNF that were increased intrathecally, but decreased in blood. IL-8 was uniformly higher in pain patients.
  •  
10.
  • Lundborg, Christopher, 1965, et al. (författare)
  • Ifenprodil restores GDNF-evoked Ca(2+) signalling and Na(+) /K(+) -ATPase expression in inflammation-pretreated astrocytes.
  • 2011
  • Ingår i: Journal of neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 119:4, s. 686-696
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: Glial cell line-derived neurotrophic factor (GDNF) plays an important role in neuroinflammatory and neuropathic pain conditions. Astrocytes produce and secrete GDNF, which interacts with its receptors to induce Ca(2+) transients. This study aimed first to assess intracellular Ca(2+) responses of astrocytes in primary culture when exposed to the neuroprotective and anti-inflammatory peptide GDNF. Furthermore, incubation with the inflammatory inducers lipopolysaccharide (LPS), NMDA, or interleukin 1-β (IL-1β) attenuated the GDNF-induced Ca(2+) transients. The next aim was to try to restore the suppressed GDNF responses induced by inflammatory changes in the astrocytes with an anti-inflammatory substance. Ifenprodil, an NMDA receptor antagonist at the NR2B subunit, was tested. It was shown to restore the GDNF-evoked Ca(2+) transients and increased the Na(+) /K(+) -ATPase expression. Ifenprodil seems to be a potent anti-inflammatory substance for astrocytes which have been pre-activated by inflammatory stimuli.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy