SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bidleman Terry) srt2:(2010-2014)"

Sökning: WFRF:(Bidleman Terry) > (2010-2014)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bidleman, Terry, et al. (författare)
  • Chapter 2: Properties, sources, global fate and transport
  • 2013
  • Ingår i: Canadian Arctic Contaminants Assessment Report III 2013. - Ottawa : Northern Contaminants Program, Aboriginal Affairs and Northern Development Canada. - 9781100546520 ; , s. 19-146
  • Bokkapitel (refereegranskat)abstract
    • Part II of the second Canadian Arctic Contaminants Assessment Report (CACAR-II) began with a section on “Physicochemical Properties of Persistent Organic Pollutants”, which identified key physicochemical (pchem) properties, provided the rationale for their measurement or prediction and tabulated literature citations for chemicals that are of concern to the NCP (Bidleman et al. 2003). The section also discussed temperature dependence of pchem properties and their applications to describing partitioning in the physical environment.There is, and will continue to be, emphasis on predictive approaches to screening chemicals for persistence, bioaccumulation and toxic (PB&T)properties, as well as long-range atmospheric transport (LRAT) potential (Brown and Wania 2008, Czub et al. 2008, Fenner et al. 2005, Gouin andWania 2007, Howard and Muir 2010, Klasmeier et al. 2006, Matthies et al. 2009, Muir and Howard 2006). This has created the need for determining pchem properties of new and emerging chemicals of concern.Predicting gas exchange cycles of legacy persistent organic pollutants (POPs) and new and emerging chemicals of concern places a high demand on the accuracy of pchem properties, particularly the air/water partition coefficient, KAW. Hexachlorocyclohexanes (HCHs) in Arctic Ocean surface waters are close to air-water equilibrium, with excursions toward net volatilization or deposition that vary with location and season (Hargrave et al. 1993, Jantunen et al. 2008a, Lohmann et al. 2009, Su et al. 2006, Wong et al. 2011) while hexachlorobenzene (HCB) (Lohmann et al. 2009, Su et al. 2006, Wong et al. 2011) and some current use pesticides (CUPs) (Wong et al. 2011) are undergoing net deposition. The predicted Arctic Contamination Potential (ACP) for persistent organic chemicals is strongly influenced by ice cover due to its effect on air-water gas exchange (Meyer and Wania 2007).Many advances have taken place and numerous papers have been published since CACAR-II, which present new measurements and predictions of pchem properties. This section does not attempt to provide a comprehensive review of the field, or to compile pchem properties from the many studies. The approach taken is to highlight the reports which are most relevant to polar science, particularly in areas of improving reliability of pchem properties for POPs, improving experimental techniques and comparing predictive methods. The section ends with a discussion of polyparameter linear free energy relationships (pp-LFERs), which goes beyond partitioning descriptions based on single pchem properties by taking into account specific chemical interactions that can take place in airsurface and water-surface exchange processes. A detailed list of chemical names and nomenclature are provided in the Glossary.
  •  
2.
  • Bidleman, Terry F., et al. (författare)
  • Air-water exchange of brominated anisoles in the northern baltic sea
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:11, s. 6124-6132
  • Tidskriftsartikel (refereegranskat)abstract
    • Bromophenols produced by marine algae undergo O-methylation to form bromoanisoles (BAs), which are exchanged between water and air. BAs were determined in surface water of the northern Baltic Sea (Gulf of Bothnia, consisting of Bothnian Bay and Bothnian Sea) during 2011-2013 and on a transect of the entire Baltic in September 2013. The abundance decreased in the following order: 2,4,6-tribromoanisole (2,4,6-TBA) > 2,4-dibromoanisole (2,4-DBA) ≫ 2,6-dibromoanisole (2,6-DBA). Concentrations of 2,4-DBA and 2,4,6-TBA in September were higher in the southern than in the northern Baltic and correlated well with the higher salinity in the south. This suggests south-to-north advection and dilution with fresh riverine water enroute, and/or lower production in the north. The abundance in air over the northern Baltic also decreased in the following order: 2,4,6-TBA > 2,4-DBA. However, 2,6-DBA was estimated as a lower limit due to breakthrough from polyurethane foam traps used for sampling. Water/air fugacity ratios ranged from 3.4 to 7.6 for 2,4-DBA and from 18 to 94 for 2,4,6-TBA, indicating net volatilization. Flux estimates using the two-film model suggested that volatilization removes 980-1360 kg of total BAs from Bothnian Bay (38000 km(2)) between May and September. The release of bromine from outgassing of BAs could be up to 4-6% of bromine fluxes from previously reported volatilization of bromomethanes and bromochloromethanes.
  •  
3.
  • Bidleman, Terry F., et al. (författare)
  • Biannual cycles of organochlorine pesticide enantiomers in arctic air suggest changing sources and pathways
  • 2014
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus GmbH. - 1680-7367 .- 1680-7375. ; 14:17, s. 25027-25050
  • Tidskriftsartikel (refereegranskat)abstract
    • Air samples collected during 1994–2000 at the Canadian arctic air monitoring stationAlert (82300 N, 62200 W) were analyzed by enantiospecific gas chromatography –mass spectrometry for -hexachlorocyclohexane (-HCH), trans-chlordane (TC) and5 cis-chlordane (CC). Results were expressed as enantiomer fractions (EF = quantitiesof (+)/[(+)+(−)] enantiomers), where EFs=0.5, < 0.5 and > 0.5 indicate racemic composition,and preferential depletion of (+) and (−) enantiomers, respectively. Long-termaverage EFs were close to racemic values for -HCH (0.504±0.004, n =197) andCC (0.505±0.004, n =162), and deviated farther from racemic for TC (0.470±0.013,10 n =165). Digital filtration analysis revealed biannual cycles of lower -HCH EFs insummer-fall and higher EFs in winter-spring. These cycles suggest volatilization ofpartially degraded -HCH with EF < 0.5 from open water and advection to Alert duringthe warm season, and background transport of -HCH with EF> 0.5 during the coldseason. The contribution of sea-volatilized -HCH was only 11% at Alert, vs. 32%15 at Resolute Bay (74.68 N, 94.90W) in 1999. EFs of TC also followed biannual cyclesof lower and higher values in the warm and cold seasons. These were in phasewith low and high cycles of the TC/CC ratio (expressed as FTC =TC/(TC+CC)), whichsuggests greater contribution of microbially “weathered” TC in summer-fall vs. winterspring.CC was closer to racemic than TC and displayed seasonal cycles only in 1997–20 1998. EF profiles are likely to change with rising contribution of secondary emissionsources, weathering of residues in the environment, and loss of ice cover in the Arctic.Enantiomer-specific analysis could provide added forensic capability to air monitoringprograms.
  •  
4.
  • Bidleman, Terry Frank, et al. (författare)
  • Chiral Chemicals as Tracers of Atmospheric Sources and Fate Processes in a World of Changing Climate
  • 2013
  • Ingår i: Mass Spectrometry. - 2186-5116. ; 2:19, Special Issue: Proceedings of 19th International Mass Spectrometry Conference, s. S0019-
  • Tidskriftsartikel (refereegranskat)abstract
    • Elimination of persistent organic pollutants (POPs) under national and international regulations reduces “primary” emissions, but “secondary” emissions continue from residues deposited in soil, water, ice and vegetation during former years of usage. In a future, secondary source controlled world, POPs will follow the carbon cycle and biogeochemical processes will determine their transport, accumulation and fate. Climate change is likely to affect mobilisation of POPs through e.g., increased temperature, altered precipitation and wind patterns, flooding, loss of ice cover in polar regions, melting glaciers, and changes in soil and water microbiology which affect degradation and transformation. Chiral compounds offer advantages for following transport and fate pathways because of their ability to distinguish racemic (newly released or protected from microbial attack) and nonracemic (microbially degraded) sources. This paper discusses the rationale for this approach and suggests applications where chiral POPs could aid investigation of climate-mediated exchange and degradation processes. Multiyear measurements of two chiral POPs, trans-chlordane and α-HCH, at a Canadian Arctic air monitoring station show enantiomer compositions which cycle seasonally, suggesting varying source contributions which may be under climatic control. Large-scale shifts in the enantioselective metabolism of chiral POPs in soil and water might influence the enantiomer composition of atmospheric residues, and it would be advantageous to include enantiospecific analysis in POPs monitoring programs.
  •  
5.
  • Bidleman, Terry F, et al. (författare)
  • Chiral persistent organic pollutants as tracers of atmospheric sources and fate : review and prospects for investigating climate change influences
  • 2012
  • Ingår i: Atmospheric Pollution Research. - 1309-1042. ; 3:4, s. 371-382
  • Tidskriftsartikel (refereegranskat)abstract
    • Elimination of persistent organic pollutants (POPs) under national and international controls reduces “primary” emissions, but “secondary” emissions continue from residues deposited in soil, water, ice and vegetation during former years of high usage. Secondary sources are expected to dominate in the future, when POPs transport and accumulation will be controlled by air–surface exchange and the biogeochemical cycle of organic carbon. Climate change is likely to affect mobilization of POPs through, e.g., increased temperature, loss of ice cover in polar regions, melting glaciers and changes in soil and water microbiology which affect degradation and transformation. Chiral compounds offer advantages for following transport and fate pathways because of their ability to distinguish racemic (newly released or protected from microbial attack) and nonracemic (microbially altered) sources. Here we explain the rationale for this approach and suggest applications where chiral POPs could aid investigation of climate–mediated exchange and degradation processes. Examples include distinguishing agricultural vs. non–agricultural and recently used vs. residual pesticides, degradation and sequestration processes in soil, historical vs. recent atmospheric deposition, sources in arctic air and influence of ice cover on volatilization.
  •  
6.
  • Bidleman, Terry F., et al. (författare)
  • Is There Still “New” DDT in North America? An Investigation Using Proportions of DDT Compounds
  • 2013
  • Ingår i: Occurrence, fate and impact of atmospheric pollutants on environmental and human health. - Washington, DC : American Chemical Society (ACS). - 9780841228900 - 9780841228917 ; , s. 153-181
  • Bokkapitel (refereegranskat)abstract
    • Usage of DDT ceased over four decades ago in Canada and the United States, and since 2000 in Mexico. Potential sources in the North American atmosphere today include emissions of legacy residues from soils and long-range transport from other countries where DDT is still used or recently banned. Distinction of source types is investigated here using proportions of p,p'-DDT, o,p'-DDT, p,p'-DDE and p,p'-DDD. The relative volatilization of DDT compounds can be accurately described by their subcooled liquid vapor pressures (PO; e.g., (p,p'-DDT/p,p'-DDE)AIR = (p,p'-DDT/p,p'-DDE)son. x PL, (DDT)/P-L,P-DDE. Using this model, the expected proportions in air due to volatilization from technical DDT and from soils in Canada, the U.S.A. and Mexico were estimated and expressed as the fractions F-DDTE = p,p'-DDT/(p,p'-DDT + P,P'-DDE), F-DDTO = p,p1-DDT/(p,p'-DDT + o,p'-DDT), and FDDTD = p,p1-DDT/(p,p'-DDT + p,p1-DDD). FDDTE, FDDTO and FDDTD predicted from soil emissions were compared to compound fractions in ambient air sampled at the Integrated Atmospheric Deposition Network (IADN) of stations on the Great Lakes between Canada and the U.S.A., and at arctic monitoring stations. FDDTE in air at IADN stations on lakes Erie, Ontario, Michigan and Huron were lower than in technical DDT vapor. This is consistent with emissions of aged residues from agricultural land and urban centers near these lakes. By comparison, FDDTE values were higher at stations on Lake Superior where atmospheric DDT is likely due to long-range transport rather than regional soil emissions. FDDTE increased from the early 1990s to 2005 at the Lake Superior stations and at the Canadian arctic station Alert between 2002-2005, whereas a significant decline in FDDTE was observed at the Norwegian arctic station Zeppelin Mountain. The mean FDDTO in air at IADN stations were consistent with either soil emissions or technical DDT composition, but annual values showed significant downward trends at two Canadian stations, and also decreased with time at Zeppelin Mountain (but not at Alert). These trends might signify contribution from dicofol-type DDT sources, which have a lower FDDTO than technical DDT or soil emissions, or preferential degradation of p,p'-DDT vs. o,p'-DDT over time. FDDTD in air at IADN stations were lower than in technical DDT vapor, showing the influence of soil sources. The enantiomer proportions of the chiral compounds o,p'-DDT and o,p1-DDD were nonracemic in some soils and ambient air, but enantiospecific analysis has not been done for IADN air samples. It is suggested that isomer, parent/metabolite and enantiomer composition information be incorporated into air monitoring programs to help identify sources.
  •  
7.
  • Bidleman, Terry Frank, et al. (författare)
  • Scavenging amphipods : sentinels for penetration of mercury and persistent organic chemicals into food webs of the deep arctic ocean
  • 2013
  • Ingår i: Environmental Science and Technology. - Washington : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 47:11, s. 5553-5561
  • Tidskriftsartikel (refereegranskat)abstract
    • Archived specimens of the scavenging amphipod Eurythenes gryllus, collected from 2075 to 4250 m below the surface on five expeditions to the western and central Arctic Ocean between 1983 and 1998, were analyzed for total mercury (∑Hg), methyl mercury (MeHg), polychlorinated biphenyls (PCBs) and other industrial or byproduct organochlorines (chlorobenzenes, pentachloroanisole, octachlorostyrene), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). Median ∑Hg concentrations ranged from 70 to 366 ng g(-1) wet weight (ww). MeHg concentrations (3.55 to 23.5 ng g(-1) ww) accounted for 1.7 to 20.1% (median 3.7%) of ∑Hg. ∑Hg and MeHg were positively and significantly correlated with ww (∑Hg r(2) = 0.18, p = 0.0004, n = 63; MeHg r(2) = 0.42, p = 0.0004, n = 25), but not significantly with δ(13)C nor δ(15)N. Median concentrations of total persistent organic pollutants (POPs) ranged from 9750 to 156 000 ng g(-1) lipid weight, with order of abundance: ∑TOX (chlorobornanes quantified as technical toxaphene) > ∑PCBs > ∑DDTs > ∑chlordanes > ∑mirex compounds > ∑BDEs ∼ ∑chlorobenzenes ∼ octachlorostyrene > α-hexachlorocyclohexane ∼ hexachlorobenzene ∼ pentachloroanisole. Enantioselective accumulation was found for the chiral OCPs o,p'-DDT, cis- and trans-chlordane, nonachlor MC6 and oxychlordane. Lipid-normalized POPs concentrations were elevated in amphipods with lipid percentages ≤10%, suggesting that utilization of lipids resulted in concentration of POPs in the remaining lipid pool. Multidimensional Scaling (MDS) analysis using log-transformed physiological variables and lipid-normalized organochlorine concentrations distinguished amphipods from the central vs western arctic stations. This distinction was also seen for PCB homologues, whereas profiles of other compound classes were more related to specific stations rather than central-west differences.
  •  
8.
  • Brommer, Sandra, et al. (författare)
  • Determination of vapor pressures for organophosphate esters
  • 2014
  • Ingår i: Journal of Chemical and Engineering Data. - : American Chemical Society (ACS). - 0021-9568 .- 1520-5134. ; 59:5, s. 1441-1447
  • Tidskriftsartikel (refereegranskat)abstract
    • Organophosphate compounds are ubiquitous in the environment and to better understand and predict their environmental transport and fate, well-defined physical-chemical properties are needed. The subcooled liquid-phase vapor pressures at 298.15 K (p298) were determined for 11 chlorinated and nonchlorinated phosphate flame retardants (PFRs) by the capillary gas chromatography retention time method (GC-RT). Values of log (p298/Pa) ranged from -5.22 to -1.32 and enthalpies of vaporization (δ l gH/kJ·mol-1) ranged from 82.0 to 109. Log (p298/Pa) by GC-RT showed good overall agreement with estimates using the Modified Grain Method (EpiSuite) and with the mean of experimental and in silico literature values, whereas values for the chlorinated PFRs appeared to be overestimated. SPARC modeling seriously underestimated p298, especially for the less volatile compounds. The Junge-Pankow adsorption model at 288.15 K predicted that most of the PFRs would be predominantly in the particulate phase in urban air and distributed between the particulate and gaseous phases in background air.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy