SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Biermann Max 1989) srt2:(2021)"

Sökning: WFRF:(Biermann Max 1989) > (2021)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biermann, Max, 1989, et al. (författare)
  • Partial capture from refineries through utilization of existing site energy systems
  • 2021
  • Ingår i: 15th Greenhouse Gas Control Technologies Conference 2021, GHGT 2021. - : Elsevier BV.
  • Konferensbidrag (refereegranskat)abstract
    • Many studies indicate that carbon capture and storage operations need to be ramped up in the coming decades to limit global warming to well-below 2°C. Partial CO2 capture from carbon-intensive industrial processes is a promising starting point for initial CO2 transport and storage infrastructure projects, such as the Norwegian full-chain CCS project “Northern Lights”, since specific capture cost (€/t CO2) for single-stack capture can be kept low compared to full capture from all, often less suitable stacks. This work highlights the importance of utilizing existing site energy systems to avoid significant increase in marginal abatement cost when moving from partial to full capture. A systematic and comprehensive techno-economic approach is applied that identifies a mix of heat supply sources with minimum cost based on a detailed analysis of available heat and capacity within the existing site energy system. Time-dependent variations are considered via multi-period, linear optimization. For single-stack capture from the hydrogen production unit (~0.5 Mt CO2 p.a.) of a Swedish refinery in the context of the current energy system, we find avoidance cost for the capture plant (liquefaction, ship transport, and storage excluded)of 42 €/t CO2-avoided that is predominantly driven by steam raised from available process heat in existing coolers (~6 €/t steam). For full capture from all major stacks (~1.4 Mt CO2 p.a.), the avoidance cost becomes twice as high (86 €/t CO2-avoided) due to heat supply from available heat and existing boiler capacity (combustion of natural gas) at costs of ~20€/t steam. The analysis shows that very few investments in new steam capacity are required, and thus, that the utilization of existing site energy systems is important for lowering capture cost significantly, and thus the whole-chain cost for early CCS projects.
  •  
2.
  • Eliasson, Åsa, 1993, et al. (författare)
  • Integration of Industrial CO2 Capture with Industrial District Heating Networks: A Refinery Case Study
  • 2021
  • Ingår i: Short Papers from the 11th International Trondheim CCS Conference. - 2387-4295. - 9788253617145 ; , s. 197-201
  • Konferensbidrag (refereegranskat)abstract
    • Industrial carbon capture and storage is recognized as an important technology to reach net zero emissions and mitigate global warming in accordance with the Paris agreement. Absorption-based carbon capture requires considerable amounts of low-grade heat, and a high degree of integration with the plant’s energy system is thus of high importance in order to achieve low operating costs for the capture plant. In this context, it is important to redefine what is commonly referred to as process “excess heat”. This work evaluates the impact of heat integration of a carbon capture plant with an existing refinery and two excess heat-powered district heating networks. The results show that a capture rate of ~60% of direct emissions at the refinery will consume all of the plant’s available residual heat. However, the results also indicate that a significant amount of heat can be recovered from the capture plant and exported for district heating supply purposes. Subsequent to capture plant integration, the potential district heating supply is 87 MW, compared to 100 MW in the reference case.
  •  
3.
  • Garðarsdóttir, Stefanía, et al. (författare)
  • Preem CCS – A Pioneering Swedish-Norwegian Collaboration Showcasing the Full CCS Chain
  • 2021
  • Ingår i: 15th Greenhouse Gas Control Technologies Conference 2021, GHGT 2021. - : Elsevier BV.
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents an overview of the Preem CCS project, a co-funded Swedish-Norwegian R&D initiative. The project aims to demonstrate CO2 capture at Preem's refinery in Lysekil, Sweden and investigating the techno-economic and regulatory aspects of capturing CO2 at the refinery in Sweden and transporting the CO2 cross borders to Norway for final storage with the Northern Lights infrastructure. The Preem CCS project started in 2019 and is due to finish by the end of 2021.
  •  
4.
  • Reyes-Lúa, Adriana, et al. (författare)
  • Potential Impact of the Preem-CCS Project
  • 2021
  • Ingår i: Short Papers from the 11th International Trondheim CCS Conference. - 2387-4295. - 9788253617145 ; , s. 63-68
  • Konferensbidrag (refereegranskat)abstract
    • The ongoing Preem CCS project investigates opportunities for CO2 capture from the Preem refineries in Lysekil and Gothenburg, Sweden, with focus on the Lysekil refinery. The consortium members of this Norwegian-Swedish collaboration are Preem AB, Chalmers University of Technology, SINTEF Energy Research, Equinor Energy and Aker Carbon Capture. In this paper, we present the alternative carbon capture and storage (CCS) value chains that are being studied, together with the potential amounts of direct CO2 emissions from production that can be captured in each case. We also discuss potential cost reduction factors for CO2 capture at the Preem refineries, such as heat integration within the refinery and economies of scale, which may also be of relevance for reduction of capture costs for other Northern Lights partners. The implementation of CO2 capture in the Preem refineries will be an important step not only for Preem but also for Sweden to reach their climate neutrality goals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy