SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bik Arjan) srt2:(2021)"

Sökning: WFRF:(Bik Arjan) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Della Bruna, Lorenza, et al. (författare)
  • Studying the ISM at similar to 10 pc scale in NGC 7793 with MUSE : II. Constraints on the oxygen abundance and ionising radiation escape
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Feedback from massive stars a ffects the interstellar medium (ISM) from the immediate surroundings of the stars (parsec scales) to galactic (kiloparsec) scales. High-spatial resolution studies of H ii regions are critical to investigate how this mechanism operates.Aims. We study the ionised ISM in NGC7793 with the MUSE instrument at ESO Very Large Telescope (VLT), over a field of view (FoV) of similar to 2 kpc2 and at a spatial resolution of similar to 10 pc. The aim is to link the physical conditions of the ionised gas (reddening, ionisation status, abundance measurements) within the spatially resolved H ii regions to the properties of the stellar populations producing Lyman continuum photons.Methods. The analysis of the MUSE dataset, which provides a map of the ionised gas and a census of Wolf Rayet stars, is complemented with a sample of young star clusters (YSCs) and O star candidates observed with the Hubble Space Telescope (HST) and of giant molecular clouds traced in CO(2-1) emission with the Atacama Large Millimeter /submillimeter Array (ALMA). We estimated the oxygen abundance using a temperature-independent strong-line method. We determined the observed total amount of ionising photons ( Q(H0)) from the extinction corrected H ff luminosity. This estimate was then compared to the expected Q(H0) obtained by summing the contributions of YSCs and massive stars. The ratio of the two values gives an estimate for the escape fraction ( fesc) of photons in the region of interest. We used the [S ii] /[O iii] ratio as a proxy for the optical depth of the gas and classified H ii regions into ionisation bounded, or as featuring channels of optically thin gas. We compared the resulting ionisation structure with the computed fesc. We also investigated the dependence of fesc on the age spanned by the stellar population in each region.Results. We find a median oxygen abundance of 12 + log (O =H) similar to 8 :37, with a scatter of 0.25 dex, which is in agreement with previous estimates for our target. We furthermore observe that the abundance map of H ii regions is rich in substructures, surrounding clusters and massive stars, although clear degeneracies with photoionisation are also observed. From the population synthesis analysis, we find that YSCs located in H ii regions have a higher probability of being younger and less massive as well as of emitting a higher number of ionising photons than clusters in the rest of the field. Overall, we find fesc;H ii = 0:67+0:08 0:12 for the population of H ii regions. We also conclude that the sources of ionisation observed within the FoV are more than su fficient to explain the amount of di ffuse ionised gas (DIG) observed in this region of the galaxy. We do not observe a systematic trend between the visual appearance of H ii regions and fesc, pointing to the e ffect of 3D geometry in the small sample probed.
  •  
2.
  • Menacho, Veronica, et al. (författare)
  • Ionized gas properties of the extreme starburst galaxy Haro 11 - temperature and metal abundance discrepancies
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:2, s. 1777-1800
  • Tidskriftsartikel (refereegranskat)abstract
    • We use high quality VLT/MUSE data to study the kinematics and the ionized gas properties of Haro 11, a well-known starburst merger system and the closest confirmed Lyman continuum leaking galaxy. We present results from integrated line maps, and from maps in three velocity bins comprising the blueshifted, systemic, and redshifted emission. The kinematic analysis reveals complex velocities resulting from the interplay of virial motions and momentum feedback. Star formation happens intensively in three compact knots (knots A, B, and C), but one, knot C, dominates the energy released in supernovae. The halo is characterized by low gas density and extinction, but with large temperature variations, coincident with fast shock regions. Moreover, we find large temperature discrepancies in knot C, when using different temperature-sensitive lines. The relative impact of the knots in the metal enrichment differs. While knot B is strongly enriching its closest surrounding, knot C is likely the main distributor of metals in the halo. In knot A, part of the metal enriched gas seems to escape through low density channels towards the south. We compare the metallicities from two methods and find large discrepancies in knot C, a shocked area, and the highly ionized zones, that we partially attribute to the effect of shocks. This work shows, that traditional relations developed from averaged measurements or simplified methods, fail to probe the diverse conditions of the gas in extreme environments. We need robust relations that include realistic models where several physical processes are simultaneously at work.
  •  
3.
  • Östlin, Göran, et al. (författare)
  • The Source of Leaking Ionizing Photons from Haro11 : Clues from HST/COS Spectroscopy of Knots A, B, and C
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 912:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the escape of ionizing (Lyman continuum) photons from galaxies is vital for determining how galaxies contributed to reionization in the early universe. While directly detecting the Lyman continuum from high-redshift galaxies is impossible due to the intergalactic medium, low-redshift galaxies in principle offer this possibility but require observations from space. The first local galaxy for which Lyman continuum escape was found is Haro 11, a luminous blue compact galaxy at z = 0.02, where observations with the FUSE satellite revealed an escape fraction of 3.3%. However, the FUSE aperture covers the entire galaxy, and it is not clear from where the Lyman continuum is leaking out. Here we utilize Hubble Space Telescope/Cosmic Origins Spectrograph spectroscopy in the wavelength range 1100-1700 angstrom of the three knots (A, B, and C) of Haro 11 to study the presence of Ly alpha emission and the properties of intervening gas. We find that all knots have bright Ly alpha emission. UV absorption lines, originating in the neutral interstellar medium, as well as lines probing the ionized medium, are seen extending to blueshifted velocities of 500 km s(-1) in all three knots, demonstrating the presence of an outflowing multiphase medium. We find that knots A and B have large covering fractions of neutral gas, making LyC escape along these sightlines improbable, while knot C has a much lower covering fraction (less than or similar to 50%). Knot C also has the the highest Ly alpha escape fraction, and we conclude that it is the most likely source of the escaping Lyman continuum detected in Haro 11.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy