SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Billig Håkan 1955) srt2:(2015-2019)"

Sökning: WFRF:(Billig Håkan 1955) > (2015-2019)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bylander, Anna, 1979, et al. (författare)
  • Progesterone-mediated effects on gene expression and oocyte-cumulus complex transport in the mouse fallopian tube.
  • 2015
  • Ingår i: Reproductive biology and endocrinology : RB&E. - : Springer Science and Business Media LLC. - 1477-7827. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The fallopian tube transports the gametes to the fertilization site and delivers the embryo to the uterus at the optimal time for implantation. Progesterone and the classical progesterone receptor are involved in regulating both tubal ciliary beating and muscular contractions, likely via both genomic and non-genomic actions.
  •  
2.
  • Cui, Peng, et al. (författare)
  • Lack of cyclical fluctuations of endometrial GLUT4 expression in women with polycystic ovary syndrome: Evidence for direct regulation of GLUT4 by steroid hormones
  • 2015
  • Ingår i: BBA Clinical. - : Elsevier BV. - 2214-6474. ; 4, s. 85-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Determination of the role of steroid hormones in expression and regulation of endometrial glucose transport 4 (GLUT4) in humans is important for understanding endometrial disorders such as polycystic ovary syndrome (PCOS), a common hormone-imbalance disease. Methods Endometrial biopsy samples were collected from non-PCOS patients with regular menstrual cycles or with hyperplasia and from PCOS patients with or without hyperplasia. In addition, endometrial tissues from postmenopausal women were incubated with human chorionic gonadotropin (hCG, 10 IU/ml), 17β-estradiol (E2, 10 nM), progesterone (P4, 100 nM), or a combination of E2 and P4 for 24 h. The expression of GLUT4 was measured at the mRNA level using quantitative real-time polymerase chain reaction (qRT-PCR) and at the protein level using Western blot analysis and immunohistochemistry. Results A cyclical change in GLUT4 expression pattern was observed in non-PCOS patients, and a high level of GLUT4 expression was seen in the proliferative phase compared to the secretory phase. Low levels of GLUT4 expression were found in PCOS patients compared to menstrual cycle phase-matched non-PCOS patients, and there was no significant change in GLUT4 expression in PCOS patients during the menstrual cycle. GLUT4 was localized in both epithelial and stromal cells, with notable changes in epithelial cells. We postulate that decreased GLUT4 expression might be regulated by steroid hormones. In support of this, we showed that in cultured endometrial tissues hCG and E2 alone had no effect on GLUT4 expression. However, P4 alone and P4 in combination with E2 decreased GLUT4 expression. Compared with non-PCOS controls, PCOS patients with endometrial hyperplasia exhibited decreased GLUT4 expression in particular in the epithelial cells. Conclusion We conclude that P4 can induce changes in endometrial GLUT4 expression during the menstrual cycle and that abnormal hormonal conditions such as PCOS disrupt normal patterns of GLUT4 expression in endometrial cells.
  •  
3.
  • Fornes, R., et al. (författare)
  • Maternal testosterone and placental function: Effect of electroacupuncture on placental expression of angiogenic markers and fetal growth
  • 2016
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 433:C, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Women with polycystic ovary syndrome (PCOS) have elevated circulating androgens during pregnancy and are at an increased risk of adverse pregnancy outcomes. Here we tested the hypotheses that maternal androgen excess decrease placental and fetal growth, and placental expression of markers of steroidogenesis, angiogenesis and sympathetic activity, and that acupuncture with low-frequency electrical stimulation prevents these changes. Pregnant rats were exposed to vehicle or testosterone on gestational day (GD)15-19. Low-frequency electroacupuncture (EA) or handling, as a control for the EA procedure, was given to control or testosterone exposed dams on GD16-20. On GD21, blood pressure was measured and maternal blood, fetuses and placentas collected. Placental steroid receptor expression and proteins involved in angiogenic, neurotrophic and adrenergic signaling were analyzed. EA did not affect any variables in control rats except maternal serum corticosterone, which was reduced. EA in testosterone exposed dams compared with controls increased systolic pressure by 30%, decreased circulating norepinephrine and corticosterone, fetal and placental weight and placental VEGFR1 and proNGF protein expression, and increased the VEGFA/VEGFR1 ratio, mature NGF (mNGF) and the mNGF/proNGF ratio. In conclusion, low-frequency EA in control animals did not have any negative influence on any of the studied variables. In contrast, EA in pregnant dams exposed to testosterone increased blood pressure and impaired placental growth and function, leading to decreased fetal growth. (C) 2016 Published by Elsevier Ireland Ltd.
  •  
4.
  • Hu, Junting, et al. (författare)
  • The regulation of nitric oxide synthase isoform expression in mouse and human fallopian tubes: Potential insights for ectopic pregnancy
  • 2015
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 16:1, s. 49-67
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitric oxide (NO) is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS), which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS). NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS). Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.
  •  
5.
  • Hu, Min, et al. (författare)
  • Endometrial progesterone receptor isoforms in women with polycystic ovary syndrome
  • 2018
  • Ingår i: American Journal of Translational Research. - 1943-8141. ; 10:8, s. 2696-2705
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Polycystic ovary syndrome (PCOS) affects approximately 4%-18% of all reproductive-aged women and is often accompanied by endometrial progesterone (P4) resistance. Endometrial cells from PCOS patients display increased progesterone receptor (PGR) expression; however, in vivo knockout studies and in vitro experiments indicate the two PGR isoforms are not functionally equivalent. Objective: We aimed to compare endometrial PGR iso-form expression between non-PCOS and PCOS patients during the proliferative phase. Design: A case-control study. The expression of PGR isoforms (PGRA and PGRB), estrogen receptor alpha (ERα), and markers of cell proliferation was determined by qRT-PCR, Western blot, immunohistochemistry, and immunofluorescence assays. Patient(s): Patients were recruited and diagnosed with PCOS according to the Rotterdam criteria provided by the American Society for Reproductive Medicine and the European Society for Human Reproduction and Embryology. Endometrial biopsy samples were collected from non-PCOS patients with regular menstrual cycles or with hyperplasia (n = 11) and from PCOS patients with or without hyperplasia (n = 14). Result(s): Although the alteration of PGRB mRNA and protein expression was different, we found that PGRA mRNA and protein expression was higher in PCOS patients than non-PCOS patients. PGRA/B and PGRB were localized in both epithelial and stromal cells, with notable changes in the nuclei of epithelial and stromal cells. A similar expression pattern of ERα, vimentin and Ki-67, in association with an increased PGR expression, was observed in PCOS patients. Conclusion(s): These results demonstrated that elevated both PGR isoform expression depends on the presence of PCOS, and our data suggest that abnormal regulation of PGR isoforms is a pathological outcome of defective endometrium in PCOS patients.
  •  
6.
  • Hu, Min, et al. (författare)
  • Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant ROS production.
  • 2019
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 316:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Women with polycystic ovary syndrome (PCOS) are at increased risk of miscarriage, which often accompanies the hyperandrogenism and insulin resistance seen in these patients. However, neither the combinatorial interaction between these two PCOS-related etiological factors nor the mechanisms of their actions in the uterus during pregnancy are well understood. We hypothesised that hyperandrogensim and insulin resistance exert a causative role in miscarriage by inducing defects in uterine function that are accompanied by mitochondrial-mediated oxidative stress, inflammation and perturbed gene expression. Here we tested this hypothesis by studying the metabolic, endocrine and uterine abnormalities in pregnant rats after exposure to daily injection of 5α-dihydrotestosterone (DHT, 1.66 mg/kg body weight/day) and/or insulin (6.0 IU/day) from gestational day 7.5 to 13.5. We showed that while DHT-exposed and insulin-exposed pregnant rats presented impaired insulin sensitivity, DHT+insulin-exposed pregnant rats exhibited hyperandrogenism and peripheral insulin resistance, which mirrors pregnant PCOS patients. Compared to controls, hyperandrogenism and insulin resistance in the dam was associated with alterations in uterine morphology and aberrant expression of genes responsible for decidualization, placentation, angiogenesis and insulin signaling. Moreover, we observed changes in uterine mitochondrial function and homeostasis and suppression of both oxidative and antioxidative defenses in response to the hyperandrogenism and insulin resistance. These findings demonstrate that hyperandrogenism and insulin resistance induce mitochondria-mediated damage and a resulting imbalance between oxidative and antioxidative stress responses in the gravid uterus.
  •  
7.
  • Hu, Min, et al. (författare)
  • Perturbed ovarian and uterine glucocorticoid receptor signaling accompanies the balanced regulation of mitochondrial function and NFκB-mediated inflammation under conditions of hyperandrogenism and insulin resistance.
  • 2019
  • Ingår i: Life sciences. - : Elsevier BV. - 1879-0631 .- 0024-3205. ; 232
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to determine whether glucocorticoid receptor (GR) signaling, mitochondrial function, and local inflammation in the ovary and uterus are intrinsically different in rats with hyperandrogenism and insulin resistance compared to controls.Female Sprague Dawley rats were exposed to daily injections of human chorionic gonadotropin and/or insulin.In both the ovary and the uterus, decreased expression of the two GR isoforms was concurrent with increased expression of Fkbp51 but not Fkbp52 mRNA in hCG+insulin-treated rats. However, these rats exhibited contrasting regulation of Hsd11b1 and Hsd11b2 mRNAs in the two tissues. Further, the expression of several oxidative phosphorylation-related proteins decreased in the ovary and uterus following hCG and insulin stimulation, in contrast to increased expression of many genes involved in mitochondrial function and homeostasis. Additionally, hCG+insulin-treated rats showed increased expression of ovarian and uterine NFκB signaling proteins and Tnfaip3 mRNA. The mRNA expression of Il1b, Il6, and Mmp2 was decreased in both tissues, while the mRNA expression of Tnfa, Ccl2, Ccl5, and Mmp3 was increased in the uterus. Ovaries and uteri from animals co-treated with hCG and insulin showed increased collagen deposition compared to controls.Our observations suggest that hyperandrogenism and insulin resistance disrupt ovarian and uterine GR activation and trigger compensatory or adaptive effects for mitochondrial homeostasis, allowing tissue-level maintenance of mitochondrial function in order to limit ovarian and uterine dysfunction. Our study also suggests that hyperandrogenism and insulin resistance activate NFκB signaling resulting in aberrant regulation of inflammation-related gene expression.
  •  
8.
  • Hu, Min, et al. (författare)
  • Uterine glycolytic enzyme expression is affected by knockout of different estrogen receptor subtypes. : ER subtypes and glycolysis in the uterus
  • 2019
  • Ingår i: Biomedical reports. - : Spandidos Publications. - 2049-9434 .- 2049-9442. ; 11:4, s. 135-144
  • Tidskriftsartikel (refereegranskat)abstract
    • The estrogen signaling pathway via nuclear estrogen receptors (ER) α and β is considered to be the master regulator of the cellular glucose metabolism in the uterus. While in vivo animal studies have demonstrated that 17β-estradiol (E2) treatment increases the expression levels and activities of several glycolytic enzymes in the uterus, the specific ER subtype-dependent regulation of key glycolytic enzymes in the uterus has not been experimentally verified. In this study, the localization of ERα and ERβ in human and mouse endometria were evaluated using immunohistology. Given that ERα and ERβ are not functionally equivalent, ERα, ERβ and ERαβ knockout (ERα-/-, ERβ-/- and ERαβ-/-) mice were utilized to determine the expression pattern of glycolytic enzymes in the uterus. It was found that the level of ERα was higher than that of ERβ in the human and mouse endometrial epithelial and stromal cells, and both receptors were downregulated by E2 treatment in the mouse uterus. The expression of the hexokinase 1 and GAPDH was increased in ERα-/- and ERβ-/- mice compared with wild-type controls. Increased phosphofructokinase expression was observed in ERα-/- and ERαβ-/- mice, whereas increased pyruvate kinase isozyme M2 and pyruvate dehydrogenase expression was observed in ERβ-/- and ERαβ-/- mice. The findings indicated for the first time that while estrogen regulates ERα and ERβ expression in the uterus, ERα and ERβ selectively regulate uterine glycolytic enzyme expression during glycolysis. Additionally, the link between endometrial ER subtypes and glycolysis in women with polycystic ovary syndrome (PCOS) is discussed. The findings suggested that the E2-dependent ER-mediated regulation of glycolysis may be involved in the disturbance of the glucose metabolism in patients with PCOS with endometrial dysfunction.
  •  
9.
  • Hu, Min, et al. (författare)
  • Uterine progesterone signaling is a target for metformin therapy in PCOS-like rats.
  • 2018
  • Ingår i: The Journal of endocrinology. - 1479-6805. ; 237:2, s. 123-137
  • Tidskriftsartikel (refereegranskat)abstract
    • Impaired progesterone (P4) signaling is linked to endometrial dysfunction and infertility in women with polycystic ovary syndrome (PCOS). Here, we report for the first time that elevated expression of progesterone receptor (PGR) isoforms A and B parallels increased estrogen receptor (ER) expression in PCOS-like rat uteri. The aberrant PGR-targeted gene expression in PCOS-like rats before and after implantation overlaps with dysregulated expression of Fkbp52 and Ncoa2, two genes that contribute to the development of uterine P4 resistance. In vivo and in vitro studies of the effects of metformin on the regulation of the uterine P4 signaling pathway under PCOS conditions showed that metformin directly inhibits the expression of PGR and ER along with the regulation of several genes that are targeted dependently or independently of PGR-mediated uterine implantation. Functionally, metformin treatment corrected the abnormal expression of cell-specific PGR and ER and some PGR-target genes in PCOS-like rats with implantation. Additionally, we documented how metformin contributes to the regulation of the PGR-associated MAPK/ERK/p38 signaling pathway in the PCOS-like rat uterus. Our data provide novel insights into how metformin therapy regulates uterine P4 signaling molecules under PCOS conditions.
  •  
10.
  • Li, Xin, et al. (författare)
  • Regulation of androgen receptor expression alters AMPK phosphorylation in the endometrium: In Vivo and In Vitro studies in women with polycystic ovary syndrome
  • 2015
  • Ingår i: International Journal of Biological Sciences. - : Ivyspring International Publisher. - 1449-2288. ; 11:12, s. 1376-1389
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2015 Ivyspring International Publisher. The failure of reproductive success in polycystic ovary syndrome (PCOS) patients could be in part due to endometrial dysfunction. However, no studies have investigated any causality between androgen, androgen receptor (AR) expression, and adenosine monophosphate activated protein kinase (AMPK) activation in the endometrium under physiological and pathological conditions. In the present study, we show that 1) endometrial AR expression levels fluctuate in non-PCOS and PCOS patients during the menstrual cycle; 2) the menstrual phase-dependent alteration of p-AMPKα expression occurs in non-PCOS patients but not in PCOS patients; 3) AR expression is higher in PCOS patients than non-PCOS patients during hyperplasia while AMPKα activation (indicated by the ratio of p-AMPKα to AMPKα); and 4) co-localization of AR and Ki-67 in epithelial cell nuclei is observed in endometrial hyperplasia. Importantly, using in vitro human tissue culture and an in vivo 5α-dihydrotestosterone-treated rat model, we show that the action of androgen on AMPKα activation is likely mediated through nuclear AR, especially in epithelial cells. Collectively, we present evidence that AR expression and AMPKα activation depend on menstrual cycle phase and the presence of PCOS, and the data suggest that AR-mediated regulation of AMPKα activation might play a role in the development of endometrial hyperplasia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy