SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Binks A. S.) srt2:(2015-2019)"

Sökning: WFRF:(Binks A. S.) > (2015-2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rowland, L, et al. (författare)
  • Death from drought in tropical forests is triggered by hydraulics not carbon starvation.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 528:7580, s. 119-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism ('carbon starvation'). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world's longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.
  •  
2.
  • Rowland, L, et al. (författare)
  • After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:12, s. 4662-4672
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesise that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2±2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5±3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. This article is protected by copyright. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy