SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bizzarro Martin) srt2:(2020-2023)"

Sökning: WFRF:(Bizzarro Martin) > (2020-2023)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Rojas, I., et al. (författare)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
2.
  • Johansen, Anders, et al. (författare)
  • A pebble accretion model for the formation of the terrestrial planets in the solar system
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Pebbles of millimeter sizes are abundant in protoplanetary discs around young stars. Chondrules inside primitive meteorites - formed by melting of dust aggregate pebbles or in impacts between planetesimals - have similar sizes. The role of pebble accretion for terrestrial planet formation is nevertheless unclear. Here, we present a model where inward-drifting pebbles feed the growth of terrestrial planets. The masses and orbits of Venus, Earth, Theia (which later collided with Earth to form the Moon), and Mars are all consistent with pebble accretion onto protoplanets that formed around Mars' orbit and migrated to their final positions while growing. The isotopic compositions of Earth and Mars are matched qualitatively by accretion of two generations of pebbles, carrying distinct isotopic signatures. Last, we show that the water and carbon budget of Earth can be delivered by pebbles from the early generation before the gas envelope became hot enough to vaporize volatiles.
  •  
3.
  • Johansen, Anders, et al. (författare)
  • Anatomy of rocky planets formed by rapid pebble accretion : I. How icy pebbles determine the core fraction and FeO contents
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a series of papers dedicated to modelling the accretion and differentiation of rocky planets that form by pebble accretion within the lifetime of the protoplanetary disc. In this first paper, we focus on how the accreted ice determines the distribution of iron between the mantle (oxidized FeO and FeO1.5) and the core (metallic Fe and FeS). We find that an initial primitive composition of ice-rich material leads, upon heating by the decay of 26Al, to extensive water flow and the formation of clay minerals inside planetesimals. Metallic iron dissolves in liquid water and precipitates as oxidized magnetite Fe3O4. Further heating by 26Al destabilizes the clay at a temperature of around 900 K. The released supercritical water ejects the entire water content from the planetesimal. Upon reaching the silicate melting temperature of 1700 K, planetesimals further differentiate into a core (made mainly of iron sulfide FeS) and a mantle with a high fraction of oxidized iron. We propose that the asteroid Vesta's significant FeO fraction in the mantle is a testimony of its original ice content. We consider Vesta to be a surviving member of the population of protoplanets from which Mars, Earth, and Venus grew by pebble accretion. We show that the increase in the core mass fraction and decrease in FeO contents with increasing planetary mass (in the sequence Vesta - Mars - Earth) is naturally explained by the growth of terrestrial planets outside of the water ice line through accretion of pebbles containing iron that was dominantly in metallic form with an intrinsically low oxidation degree.
  •  
4.
  • Johansen, Anders, et al. (författare)
  • Anatomy of rocky planets formed by rapid pebble accretion : II. Differentiation by accretion energy and thermal blanketing
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore the heating and differentiation of rocky planets that grow by rapid pebble accretion. Our terrestrial planets grow outside of the ice line and initially accrete 28% water ice by mass. The accretion of water stops after the protoplanet reaches a mass of 0.01 ME where the gas envelope becomes hot enough to sublimate the ice and transport the vapour back to the protoplanetary disc by recycling flows. The energy released by the decay of 26Al melts the accreted ice to form clay (phyllosilicates), oxidized iron (FeO), and a water surface layer with ten times the mass of Earth's modern oceans. The ocean- atmosphere system undergoes a run-away greenhouse effect after the effective accretion temperature crosses a threshold of around 300 K. The run-away greenhouse process vaporizes the water layer, thereby trapping the accretion heat and heating the surface to more than 6000 K. This causes the upper part of the mantle to melt and form a global magma ocean. Metal melt separates from silicate melt and sediments towards the bottom of the magma ocean; the gravitational energy released by the sedimentation leads to positive feedback where the beginning differentiation of the planet causes the whole mantle to melt and differentiate. All rocky planets thus naturally experience a magma ocean stage. We demonstrate that Earth's small excess of 182W (the decay product of 182Hf) relative to the chondrites is consistent with such rapid core formation within 5 Myr followed by equilibration of the W reservoir in Earth's mantle with 182W-poor material from the core of a planetary-mass impactor, provided that the equilibration degree is at least 25- 50%, depending on the initial Hf/W ratio. The planetary collision must have occurred at least 35 Myr after the main accretion phase of the terrestrial planets.
  •  
5.
  • Johansen, Anders, et al. (författare)
  • Anatomy of rocky planets formed by rapid pebble accretion : III. Partitioning of volatiles between planetary core, mantle, and atmosphere
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • Volatile molecules containing hydrogen, carbon, and nitrogen are key components of planetary atmospheres. In the pebble accretion model for rocky planet formation, these volatile species are accreted during the main planetary formation phase. For this study, we modelled the partitioning of volatiles within a growing planet and the outgassing to the surface. The core stores more than 90% of the hydrogen and carbon budgets of Earth for realistic values of the partition coefficients of H and C between metal and silicate melts. The magma oceans of Earth and Venus are sufficiently deep to undergo oxidation of ferrous Fe2+ to ferric Fe3+. This increased oxidation state leads to the outgassing of primarily CO2 and H2O from the magma ocean of Earth. In contrast, the oxidation state of Mars' mantle remains low and the main outgassed hydrogen carrier is H2. This hydrogen easily escapes the atmosphere due to the irradiation from the young Sun in XUV wavelengths, dragging with it the majority of the CO, CO2, H2O, and N2 contents of the atmosphere. A small amount of surface water is maintained on Mars, in agreement with proposed ancient ocean shorelines, for moderately low values of the mantle oxidation. Nitrogen partitions relatively evenly between the core and the atmosphere due to its extremely low solubility in magma; the burial of large reservoirs of nitrogen in the core is thus not possible. The overall low N contents of Earth disagree with the high abundance of N in all chondrite classes and favours a volatile delivery by pebble snow. Our model of rapid rocky planet formation by pebble accretion displays broad consistency with the volatile contents of the Sun's terrestrial planets. The diversity of the terrestrial planets can therefore be used as benchmark cases to calibrate models of extrasolar rocky planets and their atmospheres.
  •  
6.
  • Onyett, Isaac J., et al. (författare)
  • Silicon isotope constraints on terrestrial planet accretion
  • 2023
  • Ingår i: Nature. - 0028-0836. ; 619:7970, s. 539-544
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the nature and origin of the precursor material to terrestrial planets is key to deciphering the mechanisms and timescales of planet formation1. Nucleosynthetic variability among rocky Solar System bodies can trace the composition of planetary building blocks2–5. Here we report the nucleosynthetic composition of silicon (μ30Si), the most abundant refractory planet-building element, in primitive and differentiated meteorites to identify terrestrial planet precursors. Inner Solar System differentiated bodies, including Mars, record μ30Si deficits of −11.0 ± 3.2 parts per million to −5.8 ± 3.0 parts per million whereas non-carbonaceous and carbonaceous chondrites show μ30Si excesses from 7.4 ± 4.3 parts per million to 32.8 ± 2.0 parts per million relative to Earth. This establishes that chondritic bodies are not planetary building blocks. Rather, material akin to early-formed differentiated asteroids must represent a major planetary constituent. The μ30Si values of asteroidal bodies correlate with their accretion ages, reflecting progressive admixing of a μ30Si-rich outer Solar System material to an initially μ30Si-poor inner disk. Mars’ formation before chondrite parent bodies is necessary to avoid incorporation of μ30Si-rich material. In contrast, Earth’s μ30Si composition necessitates admixing of 26 ± 9 per cent of μ30Si-rich outer Solar System material to its precursors. The μ30Si compositions of Mars and proto-Earth are consistent with their rapid formation by collisional growth and pebble accretion less than three million years after Solar System formation. Finally, Earth’s nucleosynthetic composition for s-process sensitive (molybdenum and zirconium) and siderophile (nickel) tracers are consistent with pebble accretion when volatility-driven processes during accretion and the Moon-forming impact are carefully evaluated.
  •  
7.
  • Van Kooten, Elishevah, et al. (författare)
  • Hybrid Accretion of Carbonaceous Chondrites by Radial Transport across the Jupiter Barrier
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 910:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the origin of chondritic components and their accretion pathways is critical to unraveling the magnitude of mass transport in the protoplanetary disk, as well as the accretionary history of the terrestrial planet region and, by extension, its prebiotic inventory. Here we trace the heritage of pristine components from the relatively unaltered CV chondrite Leoville through their mass-independent Cr and mass-dependent Zn isotope compositions. Investigating these chondritic fractions in such detail reveals an onion-shell structure of chondrules, which is characterized by 54Cr- and 66Zn-poor cores surrounded by increasingly 54Cr- and 66Zn-rich igneous rims and an outer coating of fine-grained dust. This is interpreted as a progressive addition of 54Cr- and 66Zn-rich, CI-like material to the accretion region of these carbonaceous chondrites. Our findings show that the observed Cr isotopic range in chondrules from more altered CV chondrites is the result of chemical equilibration between the chondrules and matrix during secondary alteration. The 54Cr-poor nature of the cores of Leoville chondrules implies formation in the inner solar system and subsequent massive outward chondrule transport past the Jupiter barrier. At the same time, CI-like dust is transferred inward. We propose that the accreting Earth acquired CI-like dust through this mechanism within the lifetime of the disk. This radial mixing of the chondrules and matrix shows the limited capacity of Jupiter to act as an efficient barrier and maintain the proposed noncarbonaceous and carbonaceous chondrite dichotomy over time. Finally, also considering current astrophysical models, we explore both inner and outer solar system origins for the CV chondrite parent body.
  •  
8.
  • Connelly, J. N., et al. (författare)
  • Calibrating volatile loss from the Moon using the U-Pb system
  • 2022
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier. - 0016-7037 .- 1872-9533. ; 324, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous isotope studies of lunar samples have demonstrated that volatile loss was an important part of the early history of the Moon. The radiogenic U-Pb system, where Pb has a significantly lower T50% condensation temperature than U, has the capacity to both recognize and calibrate the extent of volatile loss but this approach has been hindered by terrestrial Pb contamination of samples. We employ a novel method that integrates analyses of individual samples by Ion Microprobe and Thermal Ionization mass spectrometry to correct for ubiquitous common Pb contamination, a method that results in significantly higher estimates for mu-values (238U/204Pb) than previously reported. Using this method, six of seven samples of low-Ti basaltic meteorites return mu-values between 1900 and 9600, values that are consistent with a re-evaluation of published results that return mu-values of 510-2900 for both low-and high-Ti basalts. While some degree of fractionation during partial melting may increase mu-values, we infer that the source region(s) for the basalts must also have had elevated mu-values by the time the lunar magma ocean solidified. Models to account for the available initial Pb isotopic compositions of lunar basalts in light of timing constraints from thermal modelling imply that their source regions had a mu-value of at least 280, consistent with the elevated mu-values of lunar basalts and that inferred for their sources. Such high mu-values are attributed to the preferential loss of more than 99% of the Pb over U relative to a precursor with a Mars-like composition in the aftermath of the giant impact. Such an extensive loss of Pb is consistent with previously reported losses of other elements with comparable volatility, namely Zn, Rb, Ga and CrO2. Finally, our modelling of highly-radiogenic lunar Pb isotopes assuming crystallization of the lunar magma ocean over 100s of millions of years shows that the elevated mu-values allows for, but does not require, a young Moon formation age.
  •  
9.
  • Liu, Beibei, et al. (författare)
  • Natural separation of two primordial planetary reservoirs in an expanding solar protoplanetary disk
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Meteorites display an isotopic composition dichotomy between noncarbonaceous (NC) and carbonaceous (CC) groups, indicating that planetesimal formation in the solar protoplanetary disk occurred in two distinct reservoirs. The prevailing view is that a rapidly formed Jupiter acted as a barrier between these reservoirs. We show a fundamental inconsistency in this model: If Jupiter is an efficient blocker of drifting pebbles, then the interior NC reservoir is depleted by radial drift within a few hundred thousand years. If Jupiter lets material pass it, then the two reservoirs will be mixed. Instead, we demonstrate that the arrival of the CC pebbles in the inner disk is delayed for several million years by the viscous expansion of the protoplanetary disk. Our results support the hypothesis that Jupiter formed in the outer disk (>10 astronomical units) and allowed a considerable amount of CC material to pass it and become accreted by the terrestrial planets.
  •  
10.
  • Merle, Renaud E., 1976-, et al. (författare)
  • Pb-Pb ages and initial Pb isotopic composition of lunar meteorites : NWA 773 clan, NWA 4734, and Dhofar 287
  • 2020
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons, Ltd. - 1086-9379 .- 1945-5100. ; 55:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Constraining the duration of magmatic activity on the Moon is essential to understand how the lunar mantle evolved chemically through time. Determining age and initial isotopic compositions of mafic lunar meteorites is a critical step in defining the periods of magmatic activity that occurred during the history of the Moon and to constrain the chemical characteristics of mantle components involved in the sources of the magmas. We have used the in situ Pb-Pb SIMS technique to investigate eight lunar gabbros and basalts, including six meteorites from the Northwest Africa (NWA) 773 clan (NWA 2727, NWA 2700, NWA 3333, NWA 2977, NWA 773, and NWA 3170), NWA 4734, and Dhofar 287A. These samples have been selected as there is no clear agreement on their age and they are all from the dominant low titanium chemical group. We have obtained ages of 2981 ± 12 Ma for NWA 4734 and 3208 ± 22 Ma for Dhofar 287. For the NWA 773 clan, four samples (the fine-grained basalt NWA 2727 and the three gabbros NWA 773, NWA 2977, NWA 3170) out of six yielded isochron-calculated ages that are identical within uncertainties and yielding an average age of 3086 ± 5 Ma. The age obtained for the fine-grained basalt NWA 2700 is not precise enough for comparison with the other samples. The gabbroic sample NWA 3333 yielded an age of 3038 ± 20 Ma suggesting that two distinct magmatic events may be recorded in the meteorites of the NWA 773 clan. The present study aims to identify and assess all potential issues that are associated with different ways to date lunar rocks using U-Pb?based methods. To achieve this, we have compared the new ages with the previously published data set. The entire age data set from lunar mafic meteorites was also screened to identify data showing analytical issues and evidence of resetting and terrestrial contamination. The data set combining the ages of mafic lunar meteorites and Apollo rocks suggests pulses of magmatic activity with two distinct phases between 3950 and 3575 Ma and between 3375 and 3075 Ma with the two phases separated by a gap of approximately 200 Ma. The evolution of the Pb initial ratios of the low-Ti mare basalts between approximately 3400 and 3100 Ma suggests that these rocks were progressively contaminated by a KREEP-like component.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy