SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Björk Emma) srt2:(2010-2014)"

Sökning: WFRF:(Björk Emma) > (2010-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björk, Emma M., et al. (författare)
  • Grafting mesoporous silica particles to substrates : a method for synthesizing mesoporous films with cylindrical pores perpendicular to the substrate
  • 2013
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • A method for synthesizing mesoporous silica films with cylindrical pores perpendicular to the substrate has been developed. The films consist of SBA-15 platelets that are grafted on glass substrates. The grafting is studied in terms of parameters such as pH, substrate functionalization, salt additions, time for TEOS prehydrolysis, and calcination. The best coverage of particles on the substrate was achieved for a low pH in combination with OTS-treated glass substrate. Furthermore, the prehydrolysis time of the TEOS was found to be a key parameter in order to bind the particles to the substrate. These porous films have potential in applications such as catalysis, drug delivery, and as a template for nanoparticle or nanorod, growth.
  •  
2.
  • Björk, Emma M., 1981- (författare)
  • Mesoporous Building Blocks : Synthesis and Characterization of Mesoporous Silica Particles and Films
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Catalyst supports, drug delivery systems, hosts for nanoparticles, and solar cells are just some examples of the wide range of exciting applications for mesoporous silica. In order to optimize the performance of a specific application, controlling the material’s morphology and pore size is crucial. For example, short and separated particles are beneficial for drug delivery systems, while for molecular sieves, the pore size is the key parameter.In this thesis, mesoporous silica building blocks, crystallites, with hexagonally ordered cylindrical pores were synthesized, with the aim to understand how the synthesis parameters affect the particle morphology and pore size. The synthesis of the particles is performed using a sol-gel process, and in order to increase the pore size, a combination of low temperature, and additions of heptane and NH4F was used. By variations in the amounts of reagents, as well as other synthesis conditions, the particle morphology and pore size could be altered. Separated particles were also grown on or attached to substrates to form films. Also, a material with spherical pore structure was synthesized, for the first time using this method.It was found that a variation in the heptane concentration, in combination with a long stirring time, yields a transition between fiber and sheet morphologies. Both morphologies consist of crystallites, which for the fibers are joined end to end, while for the sheets they are attached side by side such that the pores are accessible from the sheet surface. The crystallites can be separated to a rod morphology by decreasing the stirring time and tuning the HCl concentration, and it was seen that these rods are formed within 5 min of static time, even though the pore size and unit cell parameters were evolving for another 30 min. Further studies of the effects of heptane showed that the shape and mesoscopic parameters of the rods are affected by the heptane concentration, up to a value where the micelles are fully saturated with heptane. It was also observed that the particle width increases with decreasing NH4F concentration, independent of heptane amount, and a platelet morphology can be formed. The formation time of the particles decrease with decreasing NH4F, and the growth mechanism for platelets was further studied. The pore sizes for various morphologies were altered by e.g. variations in the hydrothermal treatment conditions, or the method for removing the surfactants.The separated particles can be attached to substrates, either during the particle synthesis or by post grafting prior to calcination. The film formation during the one-pot-synthesis was studied and a formation mechanism including nucleation of elongated micelles on the substrate was suggested. During the post grafting film synthesis, the medium in which the particles are dispersed, as well as functionalization of both particle and substrate are crucial for the post grafting process. The pores are easily accessible independent of the method, even though they are aligned parallel to the substrate when the one-pot-method is used, while post grafting gives a perpendicular pore orientation.In summary, this work aims to give an understanding for the formation of the synthesized material, and how to tune the material properties by alterations in parameter space. Successful syntheses of four different particle morphologies and two new types of films were performed, and the pore size could easily be tuned by various methods.
  •  
3.
  • Björk, Emma M., et al. (författare)
  • Single-pot synthesis of ordered mesoporous silica films with unique controllable morphology
  • 2014
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier. - 0021-9797 .- 1095-7103. ; 413, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesoporous silica films consisting of a monolayer of separated SBA-15 particles with unusually wide and short pores grown on silicon wafers have been fabricated in a simple single-pot-synthesis, and the formation of the films has been studied. A recipe for synthesizing mesoporous silica rods with the addition of heptane and NH4F at low temperature was used and substrates were added to the synthesis solution during the reaction. The films are ∼90 nm thick, have a pore size of 10.7–13.9 nm depending on the hydrothermal treatment time and temperature, and a pore length of 200–400 nm. All pores are parallel to the substrate, open, and easy to access, making them suitable for applications such as catalyst hosts and gas separation. The growth of the films is closely correlated to the evolution of the mesoporous silica particles. Here, we have studied the time for adding substrates to the synthesis solution, the evolution of the films with time during formation, and the effect of hydrothermal treatment. It was found that the substrates should be added within 30–60 s after turning off the stirring and the films are formed within 10 min after addition to the synthesis solution. The study has yielded a new route for synthesizing mesoporous silica films with a unique morphology.
  •  
4.
  • Björk, Emma M., et al. (författare)
  • Tuning the shape of mesoporous silica particles by alterations in parameter space : from rods to platelets
  • 2013
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 29:44, s. 13551-13561
  • Tidskriftsartikel (refereegranskat)abstract
    • The knowledge of how to control the pore size and morphology of separated mesoporous silica particles is crucial for optimizing their performance in applications, such as molecular sieves and drug delivery systems. In this work, we have systematically studied the effects of various synthesis parameters to gain a deeper understanding of how particle morphologies can be altered. It was found that the morphology for isolated particles of SBA-15 type, with unusually short and wide pores, could be altered from rods to platelets by variations in the NH4F concentration. The pore length is nearly constant (similar to 300 nm) for the different morphologies, but the particle width is increasing from 200 nm to >3 mu m when decreasing the amount of NH4F, and the pore size can be tuned between 10 and 13 nm. Furthermore, other synthesis parameters such as heptane concentration, pH, silica precursor, and additions of ions have also been studied. The trend regarding particle width is independent of heptane concentration, at the same time as heptane increases the particle length up to a plateau value of similar to 500 nm. In all, parameters controlling particle width, length, and pore size have been separated in order to evaluate their function in the particle formation. Additionally, it was found that the formation time of the particles is strongly affected by the fluoride ion concentration, and a mechanism for particle formation for this system, where micelles transform from a foam, to multilamellar vesicles, and finally to cylindrical micelles, is suggested.
  •  
5.
  • Hansson, Lars-Anders, et al. (författare)
  • Food-chain length alters community responses to global change in aquatic systems
  • 2013
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 3, s. 228-233
  • Tidskriftsartikel (refereegranskat)abstract
    • Synergies between large-scale environmental changes, such as climate change1 and increased humic content (brownification)2, will have a considerable impact on future aquatic ecosystems. On the basis of modelling, monitoring and experimental data, we demonstrate that community responses to global change are determined by food-chain length and that the top trophic level, and every second level below, will benefit from climate change, whereas the levels in between will suffer. Hence, phytoplankton, and thereby algal blooms, will benefit from climate change in three-, but not in two-trophic-level systems. Moreover, we show that both phytoplankton (resource) and zooplankton (consumer) advance their spring peak abundances similarly in response to a 3 °C temperature increase; that is, there is no support for a consumer/resource mismatch in a future climate scenario. However, in contrast to other taxa, cyanobacteria—known as toxin-producing nuisance phytoplankton3—benefit from a higher temperature and humic content irrespective of the food-chain composition. Our results are mirrored in natural ecosystems. By mechanistically merging present food-chain theory with large-scale environmental and climate changes, we provide a powerful framework for predicting and understanding future aquatic ecosystems and their provision of ecosystem services and water resources.
  •  
6.
  • Jakobsson, Martin, 1966-, et al. (författare)
  • An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data
  • 2010
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 29:25-26, s. 3505-3517
  • Tidskriftsartikel (refereegranskat)abstract
    • The hypothesis of floating ice shelves covering the Arctic Ocean during glacial periods was developed in the 1970s. In its most extreme form, this theory involved a 1000 m thick continuous ice shelf covering the Arctic Ocean during Quaternary glacial maxima including the Last Glacial Maximum (LGM). While recent observations clearly demonstrate deep ice grounding events in the central Arctic Ocean, the ice shelf hypothesis has been difficult to evaluate due to a lack of information from key areas with severe sea ice conditions. Here we present new data from previously inaccessible, unmapped areas that constrain the spatial extent and timing of marine ice sheets during past glacials. These data include multibeam swath bathymetry and subbottom profiles portraying glaciogenic features on the Chukchi Borderland, southern Lomonosov Ridge north of Greenland, Morris Jesup Rise, and Yermak Plateau. Sediment cores from the mapped areas provide age constraints on the glaciogenic features. Combining these new geophysical and geological data with earlier results suggests that an especially extensive marine ice sheet complex, including an ice shelf, existed in the Amerasian Arctic Ocean during Marine Isotope Stage (MIS) 6. From a conceptual oceanographic model we speculate that the cold halocline of the Polar Surface Water may have extended to deeper water depths during MIS 6 inhibiting the warm Atlantic water from reaching the Amerasian Arctic Ocean and, thus, creating favorable conditions for ice shelf development. The hypothesis of a continuous 1000 m thick ice shelf is rejected because our mapping results show that several areas in the central Arctic Ocean substantially shallower than 1000 m water depth are free from glacial influence on the seafloor.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy