SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blaak Ellen) srt2:(2007-2009)"

Sökning: WFRF:(Blaak Ellen) > (2007-2009)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boon, Hanneke, 1981-, et al. (författare)
  • Substrate Source Use in Older, Trained Males after Decades of Endurance Training
  • 2007
  • Ingår i: Medicine & Science in Sports & Exercise. - Philadelphia, PA : Lippincott Williams & Wilkins. - 0195-9131 .- 1530-0315. ; 39:12, s. 2160-2170
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: The purpose of this study was to compare substrate source use in older, long-term exercising, endurance-trained males with sedentary controls. METHODS: [U-C]palmitate and [6,6-H2]glucose tracers were applied to assess plasma free fatty acid (FFA) and glucose oxidation rates, and to estimate muscle- and/or lipoprotein-derived triacylglycerol (TG) and muscle glycogen use. Subjects were 10 long-term exercising, endurance-trained males and 10 sedentary controls (age 57 +/- 1 and 60 +/- 2 yr, respectively). Muscle biopsy samples were collected before and after exercise to assess muscle fiber type-specific intramyocellular lipid and glycogen content. RESULTS: During exercise, plasma palmitate Ra, Rd, and Rox were significantly greater in the trained subjects compared with the controls (Ra: 0.36 +/- 0.02 and 0.25 +/- 0.02; Rd: 0.36 +/- 0.03 and 0.24 +/- 0.02; Rox: 0.31 +/- 0.02 and 0.20 +/- 0.02 mmol.min, respectively, P < 0.01). This resulted in greater plasma FFA and total fat oxidation rates in the trained versus sedentary subjects (P < 0.001). Muscle- and/or lipoprotein-derived TG use contributed 10 +/- 2 and 11 +/- 3% in the trained and control groups, respectively (NS). No significant net changes in muscle fiber lipid content were observed. CONCLUSIONS: Older, endurance-trained males oxidize more fat during moderate-intensity exercise than do sedentary controls. This greater total fat oxidation rate is attributed to a higher plasma FFA release, uptake, and oxidation rate. In contrast, intramyocellular triacylglycerol does not seem to represent a major substrate source during 1 h of moderate-intensity exercise in older trained or sedentary men. ©2007 The American College of Sports Medicine.
  •  
2.
  • Jocken, Johan W E, et al. (författare)
  • Adipose TriGlyceride Lipase (ATGL) and Hormone-Sensitive Lipase (HSL) protein expression is decreased in the obese insulin resistant state.
  • 2007
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 92:6, s. 2292-2299
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is associated with increased triacylglycerol (TAG) storage in adipose tissue and insulin resistance. The mobilization of stored TAG is mediated by hormone-sensitive lipase (HSL) and the recently discovered adipose triglyceride lipase (ATGL). The aim of the present study was to examine whether ATGL and HSL mRNA and protein expression are altered in insulin-resistant conditions. In addition, we investigated whether a possible impaired expression could be reversed by a period of weight reduction. METHODS: Adipose tissue biopsies were taken from obese subjects (n = 44) with a wide range of insulin resistance, before and just after a 10-wk hypocaloric diet. ATGL and HSL protein and mRNA expression was determined by Western blot and quantitative RT-PCR, respectively. RESULTS: Fasting insulin levels and the degree of insulin resistance (using the homeostasis model assessment index for insulin resistance) were negatively correlated with ATGL and HSL protein expression, independent of age, gender, fat cell size, and body composition. Both mRNA and protein levels of ATGL and HSL were reduced in insulin-resistant compared with insulin-sensitive subjects (P < 0.05). Weight reduction significantly decreased ATGL and HSL mRNA and protein expression. A positive correlation between the decrease in leptin and the decrease in ATGL protein level after weight reduction was observed. Finally, ATGL and HSL mRNA and protein levels seem to be highly correlated, indicating a tight coregulation and transcriptional control. CONCLUSIONS: In obese subjects, insulin resistance and hyperinsulinemia are strongly associated with ATGL and HSL mRNA and protein expression, independent of fat mass. Data on weight reduction indicated that also other factors (e.g. leptin) relate to ATGL and HSL protein expression.
  •  
3.
  • Shaw, Danielle I, et al. (författare)
  • LIPGENE food-exchange model for alteration of dietary fat quantity and quality in free-living participants from eight European countries
  • 2009
  • Ingår i: British Journal of Nutrition. - 0007-1145 .- 1475-2662. ; 101:5, s. 750-759
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlled human intervention trials are required to confirm the hypothesis that dietary fat quality may influence insulin action. The aim was to develop a food-exchange model, suitable for use in free-living volunteers, to investigate the effects of four experimental diets distinct in fat quantity and quality: high SFA (HSFA); high MUFA (HMUFA) and two low-fat (LF) diets, one supplemented with 1.24 g EPA and DHA/d (LFn-3). A theoretical food-exchange model was developed. The average quantity of exchangeable fat was calculated as the sum of fat provided by added fats (spreads and oils), milk, cheese, biscuits, cakes, buns and pastries using data from the National Diet and Nutrition Survey of UK adults. Most of the exchangeable fat was replaced by specifically designed study foods. Also critical to the model was the use of carbohydrate exchanges to ensure the diets were isoenergetic. Volunteers from eight centres across Europe completed the dietary intervention. Results indicated that compositional targets were largely achieved with significant differences in fat quantity between the high-fat diets (39.9 (sem 0.6) and 38.9 (sem 0.51) percentage energy (%E) from fat for the HSFA and HMUFA diets respectively) and the low-fat diets (29.6 (sem 0.6) and 29.1 (sem 0.5) %E from fat for the LF and LFn-3 diets respectively) and fat quality (17.5 (sem 0.3) and 10.4 (sem 0.2) %E from SFA and 12.7 (sem 0.3) and 18.7 (sem 0.4) %E MUFA for the HSFA and HMUFA diets respectively). In conclusion, a robust, flexible food-exchange model was developed and implemented successfully in the LIPGENE dietary intervention trial.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy