SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blaak Ellen) srt2:(2020-2024)"

Sökning: WFRF:(Blaak Ellen) > (2020-2024)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Massier, Lucas, et al. (författare)
  • An integrated single cell and spatial transcriptomic map of human white adipose tissue
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-cell studies of human white adipose tissue (WAT) provide insights into the specialized cell types in the tissue. Here the authors combine publicly available and newly generated high-resolution and bulk transcriptomic results from multiple human datasets to provide a comprehensive cellular map of white adipose tissue. To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.
  •  
2.
  • Trouwborst, Inez, et al. (författare)
  • Body composition and body fat distribution in tissue-specific insulin resistance and in response to a 12-week isocaloric dietary macronutrient intervention
  • 2024
  • Ingår i: Nutrition & Metabolism. - : BMC. - 1743-7075. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Body composition and body fat distribution are important predictors of cardiometabolic diseases. The etiology of cardiometabolic diseases is heterogenous, and partly driven by inter-individual differences in tissue-specific insulin sensitivity.Objectives To investigate (1) the associations between body composition and whole-body, liver and muscle insulin sensitivity, and (2) changes in body composition and insulin sensitivity and their relationship after a 12-week isocaloric diet high in mono-unsaturated fatty acids (HMUFA) or a low-fat, high-protein, high-fiber (LFHP) diet.Methods This subcohort analysis of the PERSON study includes 93 individuals (53% women, BMI 25-40 kg/m2, 40-75 years) who participated in this randomized intervention study. At baseline and after 12 weeks of following the LFHP, or HMUFA diet, we performed a 7-point oral glucose tolerance test to assess whole-body, liver, and muscle insulin sensitivity, and whole-body magnetic resonance imaging to determine body composition and body fat distribution. Both diets are within the guidelines of healthy nutrition.Results At baseline, liver fat content was associated with worse liver insulin sensitivity (beta [95%CI]; 0.12 [0.01; 0.22]). Only in women, thigh muscle fat content was inversely related to muscle insulin sensitivity (-0.27 [-0.48; -0.05]). Visceral adipose tissue (VAT) was inversely associated with whole-body, liver, and muscle insulin sensitivity. Both diets decreased VAT, abdominal subcutaneous adipose tissue (aSAT), and liver fat, but not whole-body and tissue-specific insulin sensitivity with no differences between diets. Waist circumference, however, decreased more following the LFHP diet as compared to the HMUFA diet (-3.0 vs. -0.5 cm, respectively). After the LFHP but not HMUFA diet, improvements in body composition were positively associated with improvements in whole-body and liver insulin sensitivity.Conclusions Liver and muscle insulin sensitivity are distinctly associated with liver and muscle fat accumulation. Although both LFHP and HMUFA diets improved in body fat, VAT, aSAT, and liver fat, only LFHP-induced improvements in body composition are associated with improved insulin sensitivity.Trial registration NCT03708419 (clinicaltrials.gov).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy