SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blanchard Pierre) srt2:(2020-2023)"

Sökning: WFRF:(Blanchard Pierre) > (2020-2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5-11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of similar to 50 mu as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.
  •  
2.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
3.
  • Petit, Claire, et al. (författare)
  • Chemotherapy and radiotherapy in locally advanced head and neck cancer : an individual patient data network meta-analysis
  • 2021
  • Ingår i: The Lancet Oncology. - : Elsevier. - 1470-2045 .- 1474-5488. ; 22:5, s. 727-736
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Randomised, controlled trials and meta-analyses have shown the survival benefit of concomitant chemoradiotherapy or hyperfractionated radiotherapy in the treatment of locally advanced head and neck cancer. However, the relative efficacy of these treatments is unknown. We aimed to determine whether one treatment was superior to the other.METHODS: We did a frequentist network meta-analysis based on individual patient data of meta-analyses evaluating the role of chemotherapy (Meta-Analysis of Chemotherapy in Head and Neck Cancer [MACH-NC]) and of altered fractionation radiotherapy (Meta-Analysis of Radiotherapy in Carcinomas of Head and Neck [MARCH]). Randomised, controlled trials that enrolled patients with non-metastatic head and neck squamous cell cancer between Jan 1, 1980, and Dec 31, 2016, were included. We used a two-step random-effects approach, and the log-rank test, stratified by trial to compare treatments, with locoregional therapy as the reference. Overall survival was the primary endpoint. The global Cochran Q statistic was used to assess homogeneity and consistency and P score to rank treatments (higher scores indicate more effective therapies).FINDINGS: 115 randomised, controlled trials, which enrolled patients between Jan 1, 1980, and April 30, 2012, yielded 154 comparisons (28 978 patients with 19 253 deaths and 20 579 progression events). Treatments were grouped into 16 modalities, for which 35 types of direct comparisons were available. Median follow-up based on all trials was 6·6 years (IQR 5·0-9·4). Hyperfractionated radiotherapy with concomitant chemotherapy (HFCRT) was ranked as the best treatment for overall survival (P score 97%; hazard ratio 0·63 [95% CI 0·51-0·77] compared with locoregional therapy). The hazard ratio of HFCRT compared with locoregional therapy with concomitant chemoradiotherapy with platinum-based chemotherapy (CLRTP) was 0·82 (95% CI 0·66-1·01) for overall survival. The superiority of HFCRT was robust to sensitivity analyses. Three other modalities of treatment had a better P score, but not a significantly better HR, for overall survival than CLRTP (P score 78%): induction chemotherapy with taxane, cisplatin, and fluorouracil followed by locoregional therapy (ICTaxPF-LRT; 89%), accelerated radiotherapy with concomitant chemotherapy (82%), and ICTaxPF followed by CLRT (80%).INTERPRETATION: The results of this network meta-analysis suggest that further intensifying chemoradiotherapy, using HFCRT or ICTaxPF-CLRT, could improve outcomes over chemoradiotherapy for the treatment of locally advanced head and neck cancer.FUNDINGS: French Institut National du Cancer, French Ligue Nationale Contre le Cancer, and Fondation ARC.
  •  
4.
  • Deiana, Marco, et al. (författare)
  • A new G-quadruplex-specific photosensitizer inducing genome instability in cancer cells by triggering oxidative DNA damage and impeding replication fork progression
  • 2023
  • Ingår i: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 51:12, s. 6264-6285
  • Tidskriftsartikel (refereegranskat)abstract
    • Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.
  •  
5.
  • Deiana, Marco, et al. (författare)
  • Site-selected thionated benzothioxanthene chromophores as heavy-atom-free small-molecule photosensitizers for photodynamic therapy
  • 2022
  • Ingår i: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Photodynamic therapy is a clinically approved anticancer modality that employs a light-activated agent (photosensitizer) to generate cytotoxic reactive oxygen species (ROS). There is therefore a growing interest for developing innovative photosensitizing agents with enhanced phototherapeutic performances. Herein, we report on a rational design synthetic procedure that converts the ultrabright benzothioxanthene imide (BTI) dye into three heavy-atom-free thionated compounds featuring close-to-unit singlet oxygen quantum yields. In contrast to the BTI, these thionated analogs display an almost fully quenched fluorescence emission, in agreement with the formation of highly populated triplet states. Indeed, the sequential thionation on the BTI scaffold induces torsion of its skeleton reducing the singlet-triplet energy gaps and enhancing the spin-orbit coupling. These potential PSs show potent cancer-cell ablation under light irradiation while remaining non-toxic under dark condition owing to a photo-cytotoxic mechanism that we believe simultaneously involves singlet oxygen and superoxide species, which could be both characterized in vitro. Our study demonstrates that this simple site-selected thionated platform is an effective strategy to convert conventional carbonyl-containing fluorophores into phototherapeutic agents for anticancer PDT.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy