SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blystad Ida) srt2:(2011-2014)"

Sökning: WFRF:(Blystad Ida) > (2011-2014)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Blystad, Ida, et al. (författare)
  • Synthetic MRI of the brain in a clinical setting
  • 2012
  • Ingår i: Acta Radiologica. - : Sage Publications. - 0284-1851 .- 1600-0455. ; 53:10, s. 1158-1163
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:Conventional magnetic resonance imaging (MRI) has relatively long scan times for routine examinations, and the signal intensity of the images is related to the specific MR scanner settings. Due to scanner imperfections and automatic optimizations, it is impossible to compare images in terms of absolute image intensity. Synthetic MRI, a method to generate conventional images based on MR quantification, potentially both decreases examination time and enables quantitative measurements.PURPOSE:To evaluate synthetic MRI of the brain in a clinical setting by assessment of the contrast, the contrast-to-noise ratio (CNR), and the diagnostic quality compared with conventional MR images.MATERIAL AND METHODS:Twenty-two patients had synthetic imaging added to their clinical MR examination. In each patient, 12 regions of interest were placed in the brain images to measure contrast and CNR. Furthermore, general image quality, probable diagnosis, and lesion conspicuity were investigated.RESULTS:Synthetic T1-weighted turbo spin echo and T2-weighted turbo spin echo images had higher contrast but also a higher level of noise, resulting in a similar CNR compared with conventional images. Synthetic T2-weighted FLAIR images had lower contrast and a higher level of noise, which led to a lower CNR. Synthetic images were generally assessed to be of inferior image quality, but agreed with the clinical diagnosis to the same extent as the conventional images. Lesion conspicuity was higher in the synthetic T1-weighted images, which also had a better agreement with the clinical diagnoses than the conventional T1-weighted images.CONCLUSION:Synthetic MR can potentially shorten the MR examination time. Even though the image quality is perceived to be inferior, synthetic images agreed with the clinical diagnosis to the same extent as the conventional images in this study.
  •  
6.
  •  
7.
  • Mellergård, Johan, et al. (författare)
  • Association between Change in Normal Appearing White Matter Metabolites and Intrathecal Inflammation in Natalizumab-Treated Multiple Sclerosis
  • 2012
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Multiple sclerosis (MS) is associated not only with focal inflammatory lesions but also diffuse pathology in the central nervous system (CNS). Since there is no firm association between the amount of focal inflammatory lesions and disease severity, diffuse pathology in normal appearing white matter (NAWM) may be crucial for disease progression. Immunomodulating treatments for MS reduce the number of focal lesions, but possible effects on diffuse white matter pathology are less studied. Furthermore, it is not known whether intrathecal levels of inflammatory or neurodegenerative markers are associated with development of pathology in NAWM. Methods: Quantitative proton magnetic resonance spectroscopy (H-1-MRS) was used to investigate NAWM in 27 patients with relapsing MS before and after one year of treatment with natalizumab as well as NAWM in 20 healthy controls at baseline. Changes in H-1-MRS metabolite concentrations during treatment were also correlated with a panel of intrathecal markers of inflammation and neurodegeneration in 24 of these 27 patients. Results: The group levels of H-1-MRS metabolite concentrations were unchanged pre-to posttreatment, but a pattern of high magnitude correlation coefficients (r = 0.43-0.67, p<0.0005-0.03) were found between changes in individual metabolite concentrations (total creatine and total choline) and levels of pro-inflammatory markers (IL-1 beta and CXCL8). Conclusions: Despite a clinical improvement and a global decrease in levels of inflammatory markers in cerebrospinal fluid during treatment, high levels of pro-inflammatory CXCL8 and IL-1 beta were associated with an increase in H-1-MRS metabolites indicative of continued gliosis development and membrane turnover in NAWM.
  •  
8.
  •  
9.
  •  
10.
  • West, Janne, 1982-, et al. (författare)
  • Application of Quantitative MRI for Brain Tissue Segmentation at 1.5 T and 3.0 T Field Strengths
  • 2013
  • Ingår i: PLOS ONE. - United States : Public Library of Science. - 1932-6203. ; 8:9
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundBrain tissue segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) are important in neuroradiological applications. Quantitative Mri (qMRI) allows segmentation based on physical tissue properties, and the dependencies on MR scanner settings are removed. Brain tissue groups into clusters in the three dimensional space formed by the qMRI parameters R1, R2 and PD, and partial volume voxels are intermediate in this space. The qMRI parameters, however, depend on the main magnetic field strength. Therefore, longitudinal studies can be seriously limited by system upgrades. The aim of this work was to apply one recently described brain tissue segmentation method, based on qMRI, at both 1.5 T and 3.0 T field strengths, and to investigate similarities and differences.MethodsIn vivo qMRI measurements were performed on 10 healthy subjects using both 1.5 T and 3.0 T MR scanners. The brain tissue segmentation method was applied for both 1.5 T and 3.0 T and volumes of WM, GM, CSF and brain parenchymal fraction (BPF) were calculated on both field strengths. Repeatability was calculated for each scanner and a General Linear Model was used to examine the effect of field strength. Voxel-wise t-tests were also performed to evaluate regional differences.ResultsStatistically significant differences were found between 1.5 T and 3.0 T for WM, GM, CSF and BPF (p<0.001). Analyses of main effects showed that WM was underestimated, while GM and CSF were overestimated on 1.5 T compared to 3.0 T. The mean differences between 1.5 T and 3.0 T were -66 mL WM, 40 mL GM, 29 mL CSF and -1.99% BPF. Voxel-wise t-tests revealed regional differences of WM and GM in deep brain structures, cerebellum and brain stem.ConclusionsMost of the brain was identically classified at the two field strengths, although some regional differences were observed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy