SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bodvik Rasmus) srt2:(2012)"

Sökning: WFRF:(Bodvik Rasmus) > (2012)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bodvik, Rasmus, et al. (författare)
  • Aggregation of modified celluloses in aqueous solution : transition from methylcellulose to hydroxypropylmethylcellulose solution properties induced by a low molecular weight oxyethylene additive
  • 2012
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 28:38, s. 13562-13569
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature effects on viscosity and aggregation behaviour of aqueous solutions of three different cellulose ethers: methylcellulose (MC), hydroxypropylmethylcellulose (HPMC) and ethyl(hydroxyethyl)cellulose (EHEC), were investigated using viscosity and dynamic light scattering measurements as well as Cryo-TEM. In all cases increasing temperature reduces the solvent quality of water, which induces aggregation. It was found that the aggregation rate followed the order EHEC > HPMC > MC, suggesting that cellulose ethers containing some bulky and partly hydrophilic substituents assemble into large aggregates more readly than methylcellulose. This finding is discussed in terms of the organization of the structures formed by the different cellulose ethers. The temperature-dependent association behavior of cellulose ethers was also investigated in a novel way by adding diethyleneglycolmonobutylether (BDG) to methylcellulose aqueous solutions. When the concentration of BDG was at and above 5 wt%, methylcellulose adopted HPMC-like solution behaviour. In particular, a transition temperature where the viscosity was decreasing, prior to increasing at higher temperatures, appeared and the aggregation rate increased. This observation is rationalized by the ability of the amphiphilic BDG to accumulate at non-polar interfaces, and thus also to associate with hydrophobic regions of methylcellulose. In effect BDG is suggested to act as a physisorbed hydrophilic and bulky substituent inducing similar constraints on aggregation as the chemically attached hydroxypropyl groups in HPMC and oligo(ethyleneoxide) chains in EHEC.
  •  
2.
  • Bodvik, Rasmus (författare)
  • Bulk and interfacial properties of cellulose ethers
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This work summarizes several studies that all concern cellulose ethers of the types methylcellulose (MC) hydroxypropylmethylcellulose (HPMC) and ethyl(hydroxyethyl)cellulose (EHEC). They share the feature of negative temperature response, as they are soluble in water at room temperature but phase separate and sometimes form gels at high temperatures. The different types of viscosity transitions occurring in these three cellulose ethers are well-known. However, earlier studies have not solved the problem of why both HPMC and EHEC, as the temperature increases, exhibit a viscosity decrease just before the viscosity increases, whereas MC only has one transition temperature where the viscosity increases. With our investigations we have aimed to compare the effect of temperature on bulk solutions and on adsorbed layers of the different polymers using a range of techniques.Light scattering and cryo transmission electron microscopy (cryo-TEM) was employed to study aggregation of MC, HPMC and EHEC in solution. The solvent quality of water is reduced for all three polymers in solution as the temperature increases, and this infers an onset of aggregation at a certain temperature. The aggregation rate follows the order EHEC > HPMC > MC. Cryo-TEM pictures of solutions frozen from high temperatures showed closely packed fibrils forming dense networks in MC solution. Some fibrils were also found in HPMC solution above the transition temperature, but they did not interconnect readily. This is explained by the bulky and hydrophilic hydroxypropyl groups attached to HPMC. EHEC has similar substituents, while MC only has short and hydrophobic methyl groups attached to the main chain.An amphiphilic liquid, diethyleneglycolmonobutylether (BDG) was used as an additive to change the properties of MC solutions in water. With 10 wt% BDG added, the effect was similar in viscosity and light scattering measurements as well as cryo-TEM pictures, inducing a temperature response resembling that of HPMC in pure water. 5 wt% of BDG was enough to change the aggregation type and induce a transition temperature with viscosity decrease. The effect of the additive is rationalized by BDG acting as a hydrophobic and bulky substituent in MC, similar to the large substituents in HPMC and EHEC.Two instruments, a quartz crystal microbalance with dissipation (QCM-D) and an ellipsometer, were used in parallel to determine the changes with temperature on an adsorbed layer of MC and HPMC on silica kept in water and in polymer solution. The silica needed to be hydrophobized for significant adsorption to take place. Adsorption was similar for both polymers at low temperatures, whereas a sharp transition in several layer properties occurred for HPMC, but not for MC, close to the solution viscosity transition temperature. Atomic force microscopy (AFM) was used to measure attractive and repulsive forces and also friction forces between MC layers in polymer solution. The small changes in normal forces with temperature infer that the hydrophobic groups in MC are mostly depleted from the surface. The surface–polymer interactions increase with increasing temperature and the layer becomes more cohesive, which induces a higher load bearing capacity and lower friction when measured at high loads. AFM imaging was employed to obtain the height distribution in MC adsorbed layers. These images indicate that fibril-like structures were formed at a lower temperature in the surface layer than in bulk solution.The different preferences for adsorption and for aggregation in MC and HPMC above the solution transition temperatures are explained by the fibril formation in MC shielding hydrophobic parts of the polymer from the solution, and thus counteracting adsorption, but also fast aggregation. The viscosity decrease in HPMC and EHEC is conferred to intra-chain contraction and aggregation into less extended structures.
  •  
3.
  • Bodvik, Rasmus, et al. (författare)
  • Temperature-Dependent Competition between Adsorption and Aggregation of a Cellulose Ether-Simultaneous Use of Optical and Acoustical Techniques for Investigating Surface Properties
  • 2012
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 28:25, s. 9515-9525
  • Tidskriftsartikel (refereegranskat)abstract
    • Adsorption of the temperature-responsive polymer hydroxypropylmethylcellulose (HPMC) from an aqueous solution onto hydrophobized silica was followed well above the bulk instability temperature (T-2) in temperature cycle experiments. Two complementary techniques, QCM-D and ellipsometry, were utilized simultaneously to probe the same substrate immersed in polymer solution. The interfacial processes were correlated with changes in polymer aggregation and viscosity of polymer solutions, as monitored by light scattering and rheological measurements. The simultaneous use of ellipsometry and QCM-D, and the possibility to follow layer properties up to 80 degrees C, well above the T-2 temperature, are both novel developments. A moderate increase in adsorbed amount with temperature was found below T-2, whereas a significant increase in the adsorbed mass and changes in layer properties were observed around the T-2 temperature where the bulk viscosity increases significantly. Thus, there is a clear correlation between transition temperatures in the adsorbed layer and in bulk solution, and we discuss this in relation to a newly proposed model that considers competition between aggregation and adsorption/deposition. A much larger temperature response above the T-2 temperature was found for adsorbed layers of HPMC than for layers of methyl cellulose. Possible reasons for this are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy