SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bolinder Kristina) srt2:(2015)"

Sökning: WFRF:(Bolinder Kristina) > (2015)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bolinder, Kristina, et al. (författare)
  • AERODYNAMICS AND POLLEN ULTRASTRUCTURE IN EPHEDRA
  • 2015
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 102:3, s. 457-470
  • Tidskriftsartikel (refereegranskat)abstract
    • Premise of the study: Pollen dispersal is affected by the terminal settling velocity (U-t) of the grains, which is determined by their size, bulk density, and by atmospheric conditions. The likelihood that wind-dispersed pollen is captured by ovulate organs is influenced by the aerodynamic environment created around and by ovulate organs. We investigated pollen ultrastructure and U-t of Ephedra foeminea (purported to be entomophilous), and simulated the capture efficiency of its ovules. Results were compared with those from previously studied anemophilous Ephedra species. Methods: U-t was determined using stroboscopic photography of pollen in free fall. The acceleration field around an average ovule was calculated, and inflight behavior of pollen grains was predicted using computer simulations. Pollen morphology and ultrastructure were investigated using SEM and STEM. Key results: Pollen wall ultrastructure was correlated with U-t in Ephedra. The relative proportion and amount of granules in the infratectum determine pollen bulk densities, and (together with overall size) determine U-t and thus dispersal capability. Computer simulations failed to reveal any functional traits favoring anemophilous pollen capture in E. foeminea. Conclusion: The fast U-t and dense ultrastructure of E. foeminea pollen are consistent with functional traits that distinguish entomophilous species from anemophilous species. In anemophilous Ephedra species, ovulate organs create an aerodynamic microenvironment that directs airborne pollen to the pollination drops. In E. foeminea, no such microenvironment is created. Ephedroid palynomorphs from the Cretaceous share the ultrastructural characteristics of E. foeminea, and at least some may, therefore, have been produced by insect-pollinated plants.
  •  
2.
  • Rydin, Catarina, et al. (författare)
  • Moonlight pollination in the gymnosperm Ephedra (Gnetales)
  • 2015
  • Ingår i: Biology Letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Rydin, Catarina (2)
Bolinder, Kristina (2)
Niklas, Karl J. (1)
Lärosäte
Stockholms universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy