SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bolmsjö Gunnar) srt2:(2020-2022)"

Sökning: WFRF:(Bolmsjö Gunnar) > (2020-2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferreira Magalhães, Ana Catarina, 1986- (författare)
  • Thermoelectric Measurements for Temperature Control of Robotic Friction Stir Welding
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Friction stir welding (FSW) has undergone a rapid expansion in several industrial sectors such as in the aerospace, marine, railway and automotive sectors. Current industrial applications are mainly simple long straight welds, but there is a growth of interest in components with higher geometric complexity. However, welding of geometrically complex components represents a challenging task due to the resulting uneven induced thermal dissipation along the weld, but especially due to the need for suitable equipment, able to accurately follow a complex 3D path under high mechanical loads, while managing the machine deflection. This is the case for robots, where the high process forces result in deflections, which affects robots' compliance, leading to weld failures and poor consistency in mechanical properties.In the presented approach, the rotational speed is controlled during welding in order to maintain the set temperature value along the weld. An innovative method to measure the process temperature, the tool-workpiece thermocouple (TWT), which offers a temperature estimation from the whole tool-workpiece interface (TWT-data), is set as the controlled variable. The overall aim of this thesis is then to demonstrate the industrial applicability of TWT temperature control for joining geometrically complex components using robotic friction stir welding.The TWT-data signal is demonstrated to be fast, repeatable and representative of the welding temperature. Moreover, TWT-data supplies online information during the whole weld procedure, especially during plunging. The shoulder contact with the workpiece is identified by TWT-data, providing for an improved plunging operation, which was demonstrated to significantly improve the use of robotic FSW, overcoming the lack of stiffness inherent to this equipment type at this welding stage.Improved joint performance, low tensile strength variation along the weld path and a reduced number of failed welds were achieved by welding under temperature control. As a result, such a welding approach simplifies the development of a welding procedure, allowing for a decrease in time and material. The concept was successfully validated by performing two welds consisting of two dissimilar materials in a two-dimensional weld path on a geometrically complex component by using robotic equipment. The temperature control approach is not limited to robotic equipment, but also suitable for standard FSW equipment, being of interest to a various range of applications where quality and/or time is an important factor.
  •  
2.
  • Ziada, Osama, et al. (författare)
  • Robotic Window Assembly : A Simulation Study and a Proposed Self-Adaptive Software Architecture
  • 2022
  • Ingår i: Proceedings of the 10th Swedish Production Symposium. - : IOS Press. - 9781643682709 - 9781643682716 ; , s. 111-121
  • Konferensbidrag (refereegranskat)abstract
    • The key driving factors in using humans and robots in collaborativeapplications for assembly processes are to reduce assembly time, cost and toimprove the human working environment from an ergonomic viewpoint. Currently,there are limited automated procedures in assembly operations in house constructionbecause the traditional type of assembly process depends entirely on manpower.This is common in the assembly process in different industries since assembly isone of the most demanding and intense manufacturing processes, and it is difficultto automate. This paper presents a case study on the implementation of human-robotcollaboration for window assembly by way of an offline robot programmingsimulation. A self-adaptive software architecture that runs on a real-time targetmachine is also proposed for robotic window assembly. The window assemblymethod that will be used in this study is called “Click-In” and is manufactured byFixture System Sweden AB. Apart from robot simulations, detailed suggestions aregiven for building a pilot cell for robot window assembly. The case study presentedin this paper has both economical and ergonomic goals. The economic goal is toreduce the assembly time which will lead to an increase in window production. Byintroducing human-robot collaboration, operators do not need to performuncomfortable assembly operations—rather the robot will perform these unergonomic operations. The feasibility of both goals is verified with offline robotprogramming simulation. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy