SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bonardi R) srt2:(2015-2019)"

Sökning: WFRF:(Bonardi R) > (2015-2019)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharyya, A., et al. (författare)
  • Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout
  • 2019
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 35-53
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based veryhigh-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions.
  •  
2.
  • Acero, F., et al. (författare)
  • Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 840:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.
  •  
3.
  • Bonardi, A., et al. (författare)
  • Central acceptance testing for camera technologies for the cherenkov telescope array
  • 2015
  • Ingår i: Proceedings of Science.
  • Konferensbidrag (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA) is an international initiative to build the next generation ground based very-high energy gamma-ray observatory. It will consist of telescopes of three different sizes, employing several different technologies for the cameras that detect the Cherenkov light from the observed air showers. In order to ensure the compliance of each camera technology with CTA requirements, CTA will perform central acceptance testing of each camera technology. To assist with this, the Camera Test Facilities (CTF) work package is developing a detailed test program covering the most important performance, stability, and durability requirements, including setting up the necessary equipment. Performance testing will include a wide range of tests like signal amplitude, time resolution, dead-time determination, trigger efficiency, performance testing under temperature and humidity variations and several others. These tests can be performed on fully-integrated cameras using a portable setup at the camera construction sites. In addition, two different setups for performance tests on camera sub-units are being built, which can provide early feedback for camera development. Stability and durability tests will include the long-term functionality of movable parts, water tightness of the camera housing, temperature and humidity cycling, resistance to vibrations during transport or due to possible earthquakes, UV-resistance of materials and several others. Some durability tests will need to be contracted out because they will need dedicated equipment not currently available within CTA. The planned test procedures and the current status of the test facilities will be presented.
  •  
4.
  • Corstanje, A., et al. (författare)
  • The effect of the atmospheric refractive index on the radio signal of extensive air showers
  • 2017
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 89, s. 23-29
  • Tidskriftsartikel (refereegranskat)abstract
    • For the interpretation of measurements of radio emission from extensive air showers, an important systematic uncertainty arises from natural variations of the atmospheric refractive index n. At a given altitude, the refractivity N = 10(6) (n - 1) can have relative variations on the order of 10% depending on temperature, humidity, and air pressure. Typical corrections to be applied to N are about 4%. Using CoREAS simulations of radio emission from air showers, we have evaluated the effect of varying N on measurements of the depth of shower maximum X-max. For an observation band of 30-80 MHz, a difference of 4% in refractivity gives rise to a systematic error in the inferred X-max between 3.5 and 11 g/cm(2), for proton showers with zenith angles ranging from 15 to 50 degrees. At higher frequencies, from 120 to 250 MHz, the offset ranges from 10 to 22 g/cm(2). These offsets were found to be proportional to the geometric distance to X-max. We have compared the results to a simple model based on the Cherenkov angle. For the 120-250 MHz band, the model is in qualitative agreement with the simulations. In typical circumstances, we find a slight decrease in X-max compared to the default refractivity treatment in CoREAS. While this is within commonly treated systematic uncertainties, accounting for it explicitly improves the accuracy of X-max measurements. (C) 2017 Elsevier B.V. All rights reserved.
  •  
5.
  • Bonardi, A., et al. (författare)
  • Study of the LOFAR radio self-trigger and single-station acquisition mode
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference, ICRC 2017, 10-20 July 2017. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The LOw Frequency ARay (LOFAR) observatory is a multipurpose radio antenna array aimed to detect radio signals in the frequency range 10-240 MHz. Radio antennas are clustered into over 50 stations, and are spread along Central and Northern Europe. The LOFAR core, where the density of stations is highest, is instrumented with the LOfar Radboud air shower Array (LORA), covering an area of about 300 m diameter centered at the LOFAR core position. Since 2011 the LOFAR core has been used for detecting radio-signals associated to cosmic-ray air showers in the energy range 1016 - 1018 eV. Data acquisition is triggered by the LORA scintillator array, which provides energy, arrival direction, and core position estimates of the detected air shower too. Thus only the core of the LOFAR array is currently used for cosmic-ray detection. In order to extend the energy range of the detected cosmic rays, it is necessary to expand the effective collecting area to the whole LOFAR array. On this purpose, a detailed study about the LOFAR potentialities of working in self-trigger mode, i.e. with the cosmic-ray data acquisition trigger provided by the radio-antenna only, is presented here. A new method based on the intensity and the frequency spectrum for determining the air shower position to be implemented on LOFAR remote stations is presented too. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
6.
  • Bonardi, Antonio, et al. (författare)
  • Towards real-time cosmic-ray identification with the LOw Frequency ARay
  • 2019
  • Ingår i: 8th International Conference on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2018). - : EDP Sciences. - 9782759890804 ; , s. 1-3
  • Konferensbidrag (refereegranskat)abstract
    • The radio signals emitted by Extensive Air Showers have been successfully used for the last decade by LOFAR to reconstruct the properties of the primary cosmic rays. Since an effective real-time recognition system for the very short radio pulses is lacking, cosmic-ray acquisition is currently triggered by an external array of particle detector, called LORA, limiting the LOFAR collecting area to the area covered by LORA. A new algorithm for the real-time cosmic-ray detection has been developed for the LOFAR Low Band Antenna, which are sensitive between 10 and 90 MHz, and is here presented together with the latest results.
  •  
7.
  • Buitink, S., et al. (författare)
  • Cosmic ray mass composition with LOFAR
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference — ICRC2017. 10–20 July, 2017. Bexco, Busan, Korea. - Trieste, Italy : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The LOFAR radio telescope measures the radio emission from extensive air showers with unprecedented precision. In the dense core individual air showers are detected by hundreds of dipole antennas. By fitting the complex radiation pattern to Monte Carlo radio simulation codes we obtain measurements of the atmospheric depth of the shower maximum X max with a precision of < 20 g/cm 2 . This quantity is sensitive to the mass composition of cosmic rays. We discuss the first mass composition results of LOFAR and the improvements that are currently being made to enhance the accuracy of future analysis. Firstly, a more realistic treatment of the atmosphere will decrease the systematic uncertainties due to the atmosphere. Secondly, a series of upgrades to the LOFAR system will lead to increased effective area, duty cycle, and the possibility to extend the composition analysis down to the energy of 10 16.5 eV. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
8.
  • Corstanje, A., et al. (författare)
  • The effect of the atmospheric refractive index on the radio signal of extensive air showers using Global Data Assimilation System (GDAS)
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference, ICRC 2017, 10-20 July 2017, Bexco, Busan, Korea. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • One of the major systematic uncertainties in the measurement of Xmax from radio emission of EAS arises from variations of the refractive index in the atmosphere. The refractive index n varies with temperature, humidity and pressure, and the variations can be on the order of 10% for (n-1) at a given altitude. The effect of a varying refractive index on Xmax measurements is evaluated using CoREAS: a microscopic simulation of the radio emission from the individual particles in the cascade simulated with CORSIKA. We discuss the resulting offsets in Xmax for different frequency regimes, and compare them to a simple physical model. Under typical circumstances, the offsets in Xmax range from 4-11 g/cm2 for the 30-80 MHz frequency band. Therefore, for precise measurements it is required to include atmospheric data at the time and place of observation of the air shower into the simulations. The aim is to implement this in the next version of CoREAS/CORSIKA using the Global Data Assimilation System (GDAS), a global atmospheric model based on meteorological measurements and numerical weather predictions. This can then be used to re-evaluate the air shower measurements of the LOFAR radio telescope. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
9.
  • Hare, B. M., et al. (författare)
  • LOFAR Lightning Imaging : Mapping Lightning With Nanosecond Precision
  • 2018
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 123:5, s. 2861-2876
  • Tidskriftsartikel (refereegranskat)abstract
    • Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20km outside the area enclosed by LOFAR antennas (approximate to 3,200km(2)), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.
  •  
10.
  • Horandel, Jorg R., et al. (författare)
  • The mass composition of cosmic rays measured with LOFAR
  • 2017
  • Ingår i: RICAP16, 6TH ROMA INTERNATIONAL CONFERENCE ON ASTROPARTICLE PHYSICS. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • High-energy cosmic rays, impinging on the atmosphere of the Earth initiate cascades of secondary particles, the extensive air showers. The electrons and positrons in the air shower emit electromagnetic radiation. This emission is detected with the LOFAR radio telescope in the frequency range from 30 to 240 MHz. The data are used to determine the properties of the incoming cosmic rays. The radio technique is now routinely used to measure the arrival direction, the energy, and the particle type (atomic mass) of cosmic rays in the energy range from 10(17) to 10(18) eV. This energy region is of particular astrophysical interest, since in this regime a transition from a Galactic to an extra-galactic origin of cosmic rays is expected. For illustration, the LOFAR results are used to set constraints on models to describe the origin of high-energy cosmic rays.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy