SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bondar A.) srt2:(2000-2004)"

Sökning: WFRF:(Bondar A.) > (2000-2004)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zelenina, M., et al. (författare)
  • Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine
  • 2002
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 283:2, s. F309-F318
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporin-4 (AQP4) plays an important role in the basolateral movement of water in the collecting duct. Here we show that this water channel can be dynamically regulated. Water permeability (P-f) was measured in individual LLC-PK1 cells that were transiently transfected with AQP4. To identify which cells were transfected, AQP4 was tagged at the NH2 terminus with green fluorescent protein. Transfected cells showed a strong fluorescent signal in basolateral membrane and a low-to-negligible signal in the cytosol and apical membrane. Activation of protein kinase C (PKC) with phorbol 12,13-dibutyrate (PDBu) significantly decreased P-f of cells expressing AQP4 but had no effect on neighboring untransfected cells. No redistribution of AQP4 in response to PDBu was detected. Dopamine also decreased the P-f in transfected cells. The effect was abolished by the PKC inhibitor Ro 31-8220. Reduction of AQP4 water permeability by PDBu and dopamine was abolished by point mutation of Ser(180), a consensus site for PKC phosphorylation. We conclude that PKC and dopamine decrease AQP4 water permeability via phosphorylation at Ser(180) and that the effect is likely mediated by gating of the channel.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Zelenina, Marina, et al. (författare)
  • Copper inhibits the water and glycerol permeability of aquaporin-3
  • 2004
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 279:50, s. 51939-51943
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporin-3 (AQP3) is an aquaglyceroporin expressed in erythrocytes and several other tissues. Erythrocytes are, together with kidney and liver, the main targets for copper toxicity. Here we report that both water and glycerol permeability of human AQP3 is inhibited by copper. Inhibition is fast, dose-dependent, and reversible. If copper is dissolved in carbonic acid-bicarbonate buffer, the natural buffer system in our body, doses in the range of those observed in Wilson disease and in copper poisoning caused significant inhibition. AQP7, another aquaglyceroporin, was insensitive to copper. Three extracellular amino acid residues, Trp128, Ser152, and His241, were identified as responsible for the effect of copper on AQP3. We have previously shown that Ser152 is involved in regulation of AQP3 by pH. The fact that Ser152 mediates regulation of AQP3 by copper may explain the phenomenon of exquisite sensitivity of human erythrocytes to copper at acidic pH. When AQP3 was co-expressed with another AQP, only glycerol but not water permeability was inhibited by copper. Our results provide a better understanding of processes that occur in severe copper metabolism defects such as Wilson disease and in copper poisoning.
  •  
10.
  • Zelenina, Marina, et al. (författare)
  • Nickel and extracellular acidification inhibit the water permeability of human aquaporin-3 in lung epithelial cells.
  • 2003
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 278:32, s. 30037-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Nickel is a common cause of pneumoconiosis. Here, we show that nickel inactivates aquaporin (AQP)-3, the water channel expressed apically in epithelial cells of human terminal airways. Human AQP3 was transiently transfected into human lung cells, and water permeability was measured in transfected and neighboring untransfected cells. Incubation with NiCl2 rapidly, dose-dependently, and reversibly decreased water permeability in AQP3-expressing cells. Acidification of the extracellular medium also caused rapid, dose-dependent, and reversible inhibition of AQP3. Sensitivity of AQP3 to nickel was lower at alkaline pH than at neutral and acidic pH. Cells transfected with human AQP4 and AQP5, which are also expressed in airway epithelia, were insensitive to nickel and extracellular acidification. Zinc and cadmium, other common causes of pneumoconiosis, had no effect on the water permeability of AQP3. Three extracellular residues, Trp128, Ser152, and His241, were responsible for the blocking effect of nickel on human AQP3. Ser152 was identified as a common site for nickel and pH sensitivity. His53, Tyr124, and His154 were also involved in regulation of AQP3 by extracellular pH. In addition, the aromatic side chain of His154 was shown to be important for the water permeability of AQP3. Our results imply that nickel and extracellular pH may modulate lung water clearance and that defective water clearance may be an early component of nickel-induced lung disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy