SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boon Nicholas A) "

Sökning: WFRF:(Boon Nicholas A)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Mills, Nicholas L, et al. (författare)
  • Diesel exhaust inhalation does not affect heart rhythm or heart rate variability
  • 2011
  • Ingår i: Heart. - : BMJ. - 1355-6037 .- 1468-201X. ; 97:7, s. 544-550
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Exposure to air pollution is associated with increases in cardiovascular morbidity and mortality. This study was undertaken to determine the effect of diesel exhaust inhalation on heart rhythm and heart rate variability in healthy volunteers and patients with coronary heart disease.Design and setting Double-blind randomised crossover studies in a university teaching hospital.Patients 32 healthy non-smoking volunteers and 20 patients with prior myocardial infarction.Interventions All 52 subjects were exposed for 1 h to dilute diesel exhaust (particle concentration 300 μg/m(3)) or filtered air.Main outcome measures Heart rhythm and heart rate variability were monitored during and for 24 h after the exposure using continuous ambulatory electrocardiography and assessed using standard time and frequency domain analysis.Results No significant arrhythmias occurred during or following exposures. Patients with coronary heart disease had reduced autonomic function in comparison to healthy volunteers, with reduced standard deviations of the NN interval (SDNN, p<0.001) and triangular index (p<0.001). Diesel exhaust did not affect heart rate variability compared with filtered air (p>0.05 for all) in healthy volunteers (SDNN 101±6 vs 91±6, triangular index 20±1 vs 21±1) or patients with coronary heart disease (SDNN 47±5 vs 38±4, triangular index 8±1 vs 7±1).Conclusions Brief exposure to dilute diesel exhaust does not alter heart rhythm or heart rate variability in healthy volunteers or well-treated patients with stable coronary heart disease. Autonomic dysfunction does not appear to be a dominant mechanism that can explain the observed excess in cardiovascular events following exposure to combustion-derived air pollution.
  •  
5.
  • Mills, Nicholas L., et al. (författare)
  • Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation
  • 2011
  • Ingår i: European Heart Journal. - London : Academic Press. - 0195-668X .- 1522-9645. ; 32:21, s. 2660-2671
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution. Methods and results: To determine the in vivo effects of inhalation of diesel exhaust components, 16 healthy volunteers were exposed to (i) dilute diesel exhaust, (ii) pure carbon nanoparticulate, (iii) filtered diesel exhaust, or (iv) filtered air, in a randomized double blind cross-over study. Following each exposure, forearm blood flow was measured during intra-brachial bradykinin, acetylcholine, sodium nitroprusside, and verapamil infusions. Compared with filtered air, inhalation of diesel exhaust increased systolic blood pressure (145 +/- 4 vs. 133 +/- 3 mmHg, P < 0.05) and attenuated vasodilatation to bradykinin (P = 0.005), acetylcholine (P = 0.008), and sodium nitroprusside (P < 0.001). Exposure to pure carbon nanoparticulate or filtered exhaust had no effect on endothelium-dependent or -independent vasodilatation. To determine the direct vascular effects of nanoparticulate, isolated rat aortic rings (n = 6-9 per group) were assessed in vitro by wire myography and exposed to diesel exhaust particulate, pure carbon nanoparticulate and vehicle. Compared with vehicle, diesel exhaust particulate (but not pure carbon nanoparticulate) attenuated both acetylcholine (P < 0.001) and sodium-nitroprusside (P = 0.019)-induced vasorelaxation. These effects were partially attributable to both soluble and insoluble components of the particulate. Conclusion: Combustion-derived nanoparticulate appears to predominately mediate the adverse vascular effects of diesel exhaust inhalation. This provides a rationale for testing environmental health interventions targeted at reducing traffic-derived particulate emissions.
  •  
6.
  •  
7.
  • Lucking, Andrew J, et al. (författare)
  • Diesel exhaust inhalation increases thrombus formation in man
  • 2008
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 29:24, s. 3043-3051
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Although the mechanism is unclear, exposure to traffic-derived air pollution is a trigger for acute myocardial infarction (MI). The aim of this study is to investigate the effect of diesel exhaust inhalation on platelet activation and thrombus formation in men. METHODS AND RESULTS: In a double-blind randomized crossover study, 20 healthy volunteers were exposed to dilute diesel exhaust (350 microg/m(3)) and filtered air. Thrombus formation, coagulation, platelet activation, and inflammatory markers were measured at 2 and 6 h following exposure. Thrombus formation was measured using the Badimon ex vivo perfusion chamber. Platelet activation was assessed by flow cytometry. Compared with filtered air, diesel exhaust inhalation increased thrombus formation under low- and high-shear conditions by 24% [change in thrombus area 2229 microm(2), 95% confidence interval (CI) 1143-3315 microm(2), P = 0.0002] and 19% (change in thrombus area 2451 microm(2), 95% CI 1190-3712 microm(2), P = 0.0005), respectively. This increased thrombogenicity was seen at 2 and 6 h, using two different diesel engines and fuels. Diesel exhaust also increased platelet-neutrophil and platelet-monocyte aggregates by 52% (absolute change 6%, 95% CI 2-10%, P = 0.01) and 30% (absolute change 3%, 95% CI 0.2-7%, P = 0.03), respectively, at 2 h following exposure compared with filtered air. CONCLUSION: Inhalation of diesel exhaust increases ex vivo thrombus formation and causes in vivo platelet activation in man. These findings provide a potential mechanism linking exposure to combustion-derived air pollution with the triggering of acute MI.
  •  
8.
  • Lucking, Andrew J, et al. (författare)
  • Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men
  • 2011
  • Ingår i: Circulation. - 0009-7322 .- 1524-4539. ; 123:16, s. 1721-1728
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: In controlled human exposure studies, diesel engine exhaust inhalation impairs vascular function and enhances thrombus formation. The aim of the present study was to establish whether an exhaust particle trap could prevent these adverse cardiovascular effects in men. METHODS AND RESULTS: Nineteen healthy volunteers (mean age, 25±3 years) were exposed to filtered air and diesel exhaust in the presence or absence of a particle trap for 1 hour in a randomized, double-blind, 3-way crossover trial. Bilateral forearm blood flow and plasma fibrinolytic factors were assessed with venous occlusion plethysmography and blood sampling during intra-arterial infusion of acetylcholine, bradykinin, sodium nitroprusside, and verapamil. Ex vivo thrombus formation was determined with the use of the Badimon chamber. Compared with filtered air, diesel exhaust inhalation was associated with reduced vasodilatation and increased ex vivo thrombus formation under both low- and high-shear conditions. The particle trap markedly reduced diesel exhaust particulate number (from 150 000 to 300 000/cm(3) to 30 to 300/cm(3); P<0.001) and mass (320±10 to 7.2±2.0 μg/m(3); P<0.001), and was associated with increased vasodilatation, reduced thrombus formation, and an increase in tissue-type plasminogen activator release. CONCLUSIONS: Exhaust particle traps are a highly efficient method of reducing particle emissions from diesel engines. With a range of surrogate measures, the use of a particle trap prevents several adverse cardiovascular effects of exhaust inhalation in men. Given these beneficial effects on biomarkers of cardiovascular health, the widespread use of particle traps on diesel-powered vehicles may have substantial public health benefits and reduce the burden of cardiovascular disease.
  •  
9.
  • Mills, Nicholas L, et al. (författare)
  • Adverse cardiovascular effects of air pollution
  • 2009
  • Ingår i: Nature Clinical Practice Cardiovascular Medicine. - : Springer Science and Business Media LLC. - 1743-4297 .- 1743-4300. ; 6:1, s. 36-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Air pollution is increasingly recognized as an important and modifiable determinant of cardiovascular disease in urban communities. Acute exposure has been linked to a range of adverse cardiovascular events including hospital admissions with angina, myocardial infarction, and heart failure. Long-term exposure increases an individual's lifetime risk of death from coronary heart disease. The main arbiter of these adverse health effects seems to be combustion-derived nanoparticles that incorporate reactive organic and transition metal components. Inhalation of this particulate matter leads to pulmonary inflammation with secondary systemic effects or, after translocation from the lung into the circulation, to direct toxic cardiovascular effects. Through the induction of cellular oxidative stress and proinflammatory pathways, particulate matter augments the development and progression of atherosclerosis via detrimental effects on platelets, vascular tissue, and the myocardium. These effects seem to underpin the atherothrombotic consequences of acute and chronic exposure to air pollution. An increased understanding of the mediators and mechanisms of these processes is necessary if we are to develop strategies to protect individuals at risk and reduce the effect of air pollution on cardiovascular disease.
  •  
10.
  • Mills, Nicholas L, et al. (författare)
  • Exposure to concentrated ambient particles does not affect vascular function in patients with coronary heart disease
  • 2008
  • Ingår i: Journal of Environmental Health Perspectives. - : National Institute of Environmental Health Sciences. - 0091-6765 .- 1552-9924. ; 116:6, s. 709-715
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Exposure to fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. We previously demonstrated that exposure to dilute diesel exhaust causes vascular dysfunction in humans.OBJECTIVES: We conducted a study to determine whether exposure to ambient particulate matter causes vascular dysfunction. METHODS: Twelve male patients with stable coronary heart disease and 12 age-matched volunteers were exposed to concentrated ambient fine and ultrafine particles (CAPs) or filtered air for 2 hr using a randomized, double-blind cross-over study design. We measured peripheral vascular vasomotor and fibrinolytic function, and inflammatory variables-including circulating leukocytes, serum C-reactive protein, and exhaled breath 8-isoprostane and nitrotyrosine-6-8 hr after both exposures.RESULTS: Particulate concentrations (mean +/- SE) in the exposure chamber (190+/-37 microg/m(3)) were higher than ambient levels (31+/-8 microg/m(3)) and levels in filtered air (0.5+/-0.4 microg/m(3); p<0.001). Chemical analysis of CAPs identified low levels of elemental carbon. Exhaled breath 8-isoprostane concentrations increased after exposure to CAPs (16.9+/-8.5 vs. 4.9+/-1.2 pg/mL, p<0.05), but markers of systemic inflammation were largely unchanged. Although there was a dose-dependent increase in blood flow and plasma tissue plasminogen activator release (p<0.001 for all), CAPs exposure had no effect on vascular function in either group.CONCLUSIONS: Despite achieving marked increases in particulate matter, exposure to CAPs--low in combustion-derived particles--did not affect vasomotor or fibrinolytic function in either middle-aged healthy volunteers or patients with coronary heart disease. These findings contrast with previous exposures to dilute diesel exhaust and highlight the importance of particle composition in determining the vascular effects of particulate matter in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Sandström, Thomas (7)
Johansson, Lars (1)
Kelly, Daniel (1)
White, Martin (1)
Sulo, Gerhard (1)
Bengtsson-Palme, Joh ... (1)
visa fler...
Nilsson, Henrik (1)
Wang, Jin (1)
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
Wang, Mei (1)
Hassankhani, Hadi (1)
Liu, Yang (1)
Ali, Muhammad (1)
Mitchell, Philip B (1)
McKee, Martin (1)
Madotto, Fabiana (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Abolhassani, Hassan (1)
Rezaei, Nima (1)
Khatlani, T (1)
Castro, Franz (1)
Strålfors, Peter (1)
Kahan, Thomas (1)
Koul, Parvaiz A. (1)
Kominami, Eiki (1)
Salvesen, Guy (1)
Weiss, Daniel J. (1)
Ackerman, Ilana N. (1)
Sörelius, Karl, 1981 ... (1)
Bonaldo, Paolo (1)
Batra, Jyotsna (1)
Brenner, Hermann (1)
Roobol, Monique J (1)
Minucci, Saverio (1)
Eliasson, Björn, 195 ... (1)
Backman, Lars (1)
Yan, Hong (1)
Schmidt, Axel (1)
Ferrara, Giannina (1)
Salama, Joseph S. (1)
Mullany, Erin C. (1)
Abbafati, Cristiana (1)
Bensenor, Isabela M. (1)
visa färre...
Lärosäte
Umeå universitet (8)
Göteborgs universitet (3)
Lunds universitet (3)
Karolinska Institutet (3)
Uppsala universitet (2)
Högskolan i Halmstad (1)
visa fler...
Stockholms universitet (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Högskolan Dalarna (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy