SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bornefalk Hans) srt2:(2015-2019)"

Sökning: WFRF:(Bornefalk Hans) > (2015-2019)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ekström, Magnus, et al. (författare)
  • Validation of the Swedish Multidimensional Dyspnea Profile (MDP) in outpatients with cardiorespiratory disease
  • 2019
  • Ingår i: BMJ Open Respiratory Research. - : BMJ. - 2052-4439. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Breathlessness is a cardinal symptom in cardiorespiratory disease. An instrument for measuring different aspects of breathlessness was recently developed, the Multidimensional Dyspnea Profile (MDP). This study aimed to validate the MDP in terms of the underlying factor structure, internal consistency, test-retest reliability and concurrent validity in Swedish outpatients with cardiorespiratory disease. Methods Outpatients with stable cardiorespiratory disease and breathlessness in daily life were recruited. Factor structure of MDP was analysed using confirmatory factor analysis; internal consistency was analysed using Cronbach's alpha; and test-retest reliability was analysed using intraclass correlation coefficients (ICCs) for patients with unchanged breathlessness between assessments (baseline, after 30-90 min and 2 weeks). Concurrent validity was evaluated using correlations with validated scales of breathlessness, anxiety, depression and health-related quality of life. Results In total, 182 outpatients with cardiorespiratory disease and breathlessness in daily life were included; 53.3% were women; main diagnoses were chronic obstructive pulmonary disease (24.7%), asthma (21.4%), heart failure (19.2%) and idiopathic pulmonary fibrosis (18.7%). The MDP total, immediate perception and emotional response scores, and individual item scores showed expected factor structure and acceptable measurement properties: internal consistency (Cronbach's alpha, range 0.80-0.93); test-retest reliability at 30-90 min and 2 weeks (ICC, range 0.67-0.91); and concurrent validity. There was no evidence of a learning effect. Findings were similar between diagnoses. Discussion MDP is a valid instrument for multidimensional measurement of breathlessness in Swedish outpatients across cardiorespiratory diseases.
  •  
2.
  • Sundh, Josefin, 1972-, et al. (författare)
  • Clinical validation of the Swedish version of Dyspnoea-12 instrument in outpatients with cardiorespiratory disease
  • 2019
  • Ingår i: BMJ Open Respiratory Research. - : BMJ. - 2052-4439. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Breathlessness is the cardinal symptom in both cardiac and respiratory diseases, and includes multiple dimensions. The multidimensional instrument Dyspnoea-12 has been developed to assess both physical and affective components of breathlessness. This study aimed to perform a clinical validation of the Swedish version of Dyspnoea-12 in outpatients with cardiorespiratory disease. Methods Stable outpatients with cardiorespiratory disease and self-reported breathlessness in daily life were recruited from five Swedish centres. Assessments of Dyspnoea-12 were performed at baseline, after 30-90 min and after 2 weeks. Factor structure was tested using confirmatory factor analysis and internal consistency using Cronbach's alpha. Test-retest reliability was analysed using intraclass correlation coefficients (ICCs). Concurrent validity at baseline was evaluated by examining correlations with lung function and several instruments for the assessment of symptoms and health status. Results In total, 182 patients were included: with the mean age of 69 years and 53% women. The main causes of breathlessness were chronic obstructive pulmonary disease (COPD; 25%), asthma (21%), heart failure (19%) and idiopathic pulmonary fibrosis (19%). Factor analysis confirmed the expected underlying two-component structure with two subdomains. The Dyspnoea-12 total score, physical subdomain score and affective subdomain scores showed high internal consistency (Cronbach's alpha 0.94, 0.84 and 0.80, respectively) and acceptable reliability after 2 weeks (ICC total scores 0.81, 0.79 and 0.73). Dyspnoea-12 showed concurrent validity with the instruments modified Medical Research Council scale, COPD Assessment Test, European Quality of Life-Five Dimensions-Five levels, the Functional Assessment of Chronic Illness Therapy-Fatigue, the Hospital Anxiety and Depression Scale, and with forced expiratory volume in 1 s in percentage of predicted value. The results were consistent across different cardiorespiratory conditions. Conclusion The Dyspnoea-12 is a valid instrument for multidimensional assessment of breathlessness in Swedish patients with cardiorespiratory diseases.
  •  
3.
  • Bornefalk, Hans, 1974-, et al. (författare)
  • Allowable forward model misspecification for accurate basis decomposition in a silicon detector based spectral CT
  • 2015
  • Ingår i: IEEE Transactions on Medical Imaging. - : IEEE Press. - 0278-0062 .- 1558-254X. ; 34:3, s. 788-795
  • Tidskriftsartikel (refereegranskat)abstract
    • Material basis decomposition in the sinogram domain requires accurate knowledge of the forward model in spectral computed tomography (CT). Misspecifications over a certain limit will result in biased estimates and make quantum limited (where statistical noise dominates) quantitative CT difficult. We present a method whereby users can determine the degree of allowed misspecification error in a spectral CT forward model and still have quantification errors that are limited by the inherent statistical uncertainty. For a particular silicon detector based spectral CT system, we conclude that threshold determination is the most critical factor and that the bin edges need to be known to within 0.15 keV in order to be able to perform quantum limited material basis decomposition. The method as such is general to all multibin systems.
  •  
4.
  • Grönberg, Fredrik, et al. (författare)
  • Image reconstruction based on energy-resolved image data from a photon-counting multi-bin detector
  • 2015
  • Patent (populärvet., debatt m.m.)abstract
    • There is provided a method of image reconstruction based on energy-resolved image data from a photon-counting multi-bin detector or an intermediate storage. The method comprises processing (S1) the energy-resolved image data by performing at least two separate basis decompositions using different number of basis functions for modeling linear attenuation, wherein a first basis decomposition is performed using a first smaller set of basis functions to obtain at least one first basis image representation, and wherein a second basis decomposition is performed using a second larger set of basis functions to obtain at least one second basis image representation. The method also comprises reconstructing a first image based on said at least one first basis image representation obtained from the first basis decomposition, and combining the first image with information representative of said at least one second basis image representation.
  •  
5.
  •  
6.
  • Liu, Xuejin, et al. (författare)
  • Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum
  • 2015
  • Ingår i: IEEE Transactions on Nuclear Science. - 0018-9499 .- 1558-1578. ; 62:1, s. 68-75
  • Tidskriftsartikel (refereegranskat)abstract
    • The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibrationmethod for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e. g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibrationmethod presented in this papermakes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to ameasured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.
  •  
7.
  • Liu, Xuejin, et al. (författare)
  • Modelling the channel-wise count response of a photon-counting spectral CT detector to a broad x-ray spectrum
  • 2015
  • Ingår i: Medical Imaging 2015: Physics of Medical Imaging. - : SPIE. - 9781628415025
  • Konferensbidrag (refereegranskat)abstract
    • Variations among detector channels in CT very sensitively lead to ring artefacts in the reconstructed images. For material decomposition in the projection domain, the variations can result in intolerable biases in the material line integral estimates. A typical way to overcome these effects is to apply calibration methods that try to unify spectral responses from different detector channels to an ideal response from a detector model. However, the calibration procedure can be rather complex and require excessive calibration measurements for a multitude of combinations of x-ray shapes, tissue combinations and thicknesses. In this paper, we propose a channel-wise model for a multibin photon-counting detector for spectral CT. Predictions of this channel-wise model match well with their physical performances, which can thus be used to eliminate ring artefacts in CT images and achieve projection-basis material decomposition. In an experimental validation, image data show significant improvement with respect to ring artefacts compared to images calibrated with flat-fielding data. Projection-based material decomposition gives basis material images showing good separation among individual materials and good quantification of iodine and gadolinium contrast agents. The work indicates that the channel-wise model can be used for quantitative CT with this detector.
  •  
8.
  • Liu, Xuejin, et al. (författare)
  • Spectral response model for a multibin photon-counting spectral computed tomography detector and its applications
  • 2015
  • Ingår i: Journal of Medical Imaging. - : SPIE - International Society for Optical Engineering. - 2329-4302 .- 2329-4310. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Variations among detector channels in computed tomography can lead to ring artifacts in the reconstructed images and biased estimates in projection-based material decomposition. Typically, the ring artifacts are corrected by compensation methods based on flat fielding, where transmission measurements are required for a number of material-thickness combinations. Phantoms used in these methods can be rather complex and require an extensive number of transmission measurements. Moreover, material decomposition needs knowledge of the individual response of each detector channel to account for the detector inhomogeneities. For this purpose, we have developed a spectral response model that binwise predicts the response of a multibin photon-counting detector individually for each detector channel. The spectral response model is performed in two steps. The first step employs a forward model to predict the expected numbers of photon counts, taking into account parameters such as the incident x-ray spectrum, absorption efficiency, and energy response of the detector. The second step utilizes a limited number of transmission measurements with a set of flat slabs of two absorber materials to fine-tune the model predictions, resulting in a good correspondence with the physical measurements. To verify the response model, we apply the model in two cases. First, the model is used in combination with a compensation method which requires an extensive number of transmission measurements to determine the necessary parameters. Our spectral response model successfully replaces these measurements by simulations, saving a significant amount of measurement time. Second, the spectral response model is used as the basis of the maximum likelihood approach for projection-based material decomposition. The reconstructed basis images show a good separation between the calcium-like material and the contrast agents, iodine and gadolinium. The contrast agent concentrations are reconstructed with more than 94% accuracy.
  •  
9.
  •  
10.
  • Persson, Mats, 1987- (författare)
  • Spectral Computed Tomography with a Photon-Counting Silicon-Strip Detector
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Computed tomography (CT) is a widely used medical imaging modality. By rotating an x-ray tube and an x-ray detector around the patient, a CT scanner is able to measure the x-ray transmission from all directions and form an image of the patient’s interior. CT scanners in clinical use today all use energy-integrating detectors, which measure the total incident energy for each measurement interval. A photon-counting detector, on the other hand, counts the number of incoming photons and can in addition measure the energy of each photon by comparing it to a number of energy thresholds. Using photon- counting detectors in computed tomography could lead to improved signal-to-noise ratio, higher spatial resolution and improved spectral imaging which allows better visualization of contrast agents and more reliable quantitative measurements. In this Thesis, the feasibility of using a photon-counting silicon-strip detector for CT is investigated. In the first part of the Thesis, the necessary performance requirements on such a detector is investigated in two different areas: the detector element homogeneity and the capability of handling high photon fluence rates. A metric of inhomogeneity is proposed and used in a simulation study to evaluate different inhomogeneity compensation methods. Also, the photon fluence rate incident on the detector in a scanner in clinical use today is investigated for different patient sizes through dose rate measurements together with simulations of transmission through patient im- ages. In the second part, a prototype detector module is used to demonstrate new applications enabled by the energy resolution of the detector. The ability to generate material-specific images of contrast agents with iodine and gadolinium is demonstrated. Furthermore, it is shown theoretically and ex- perimentally that interfaces in the image can be visualized by imaging the so-called nonlinear partial volume effect. The results suggest that the studied silicon-strip detector is a promising candidate for photon-counting CT.  
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy