SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bornman Janet F.) srt2:(2015-2019)"

Sökning: WFRF:(Bornman Janet F.) > (2015-2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barnes, Paul W., et al. (författare)
  • Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future
  • 2019
  • Ingår i: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 2:7, s. 569-579
  • Forskningsöversikt (refereegranskat)abstract
    • © 2019, Springer Nature Limited. Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth’s surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.
  •  
2.
  • Black, Lucinda J., et al. (författare)
  • In pursuit of vitamin D in plants
  • 2017
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Vitamin D deficiency is a global concern. Much research has concentrated on the endogenous synthesis of vitamin D in human skin following exposure to ultraviolet‐B radiation (UV‐B, 280–315 nm). In many regions of the world there is insufficient UV‐B radiation during winter months for adequate vitamin D production, and even when there is sufficient UV‐B radiation, lifestyles and concerns about the risks of sun exposure may lead to insufficient exposure and to vitamin D deficiency. In these situations, dietary intake of vitamin D from foods or supplements is important for maintaining optimal vitamin D status. Some foods, such as fatty fish and fish liver oils, certain meats, eggs, mushrooms, dairy, and fortified foods, can provide significant amounts of vitamin D when considered cumulatively across the diet. However, little research has focussed on assessing edible plant foods for potential vitamin D content. The biosynthesis of vitamin D in animals, fungi and yeasts is well established; it is less well known that vitamin D is also biosynthesised in plants. Research dates back to the early 1900s, beginning with in vivo experiments showing the anti‐rachitic activity of plants consumed by animals with induced rickets, and in vitro experiments using analytical methods with limited sensitivity. The most sensitive, specific and reliable method for measuring vitamin D and its metabolites is by liquid chromatography tandem mass spectrometry (LC‐MS/MS). These assays have only recently been customised to allow measurement in foods, including plant materials. This commentary focuses on the current knowledge and research gaps around vitamin D in plants, and the potential of edible plants as an additional source of vitamin D for humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy