SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bourgeois Stephane) srt2:(2013)"

Sökning: WFRF:(Bourgeois Stephane) > (2013)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brinkmalm, Gunnar, et al. (författare)
  • Soluble amyloid precursor protein alpha and beta in CSF in Alzheimer's disease
  • 2013
  • Ingår i: Brain Research. - : Elsevier BV. - 1872-6240 .- 0006-8993. ; 1513, s. 117-126
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Cerebral accumulation of amyloid beta (A beta) is a pathological hallmark of Alzheimer's disease (AD). Proteolytic processing of amyloid precursor protein (APP) by alpha- or beta-secretase results in two soluble metabolites, sAPP alpha and sAPP beta, respectively. However, previous data have shown that both alpha- and beta-secretase have multiple cleavage sites. The aim of this study was to characterize the C-termini of sAPP alpha and sAPP beta in cerebrospinal fluid (CSF) by mass spectrometry (MS) and to evaluate whether different combinations of these fragments better separate between AD patients and controls by comparing two different sAPP immunoassays. Methods: Using immunoprecipitation and high resolution MS, the APP species present in CSF were investigated. CSF levels of sAPP alpha and sAPP beta from patients with AD (n=43) and from non-demented controls (n=44) were measured using AlphaLISA and MSD immunoassays that employ different antibodies for C-terminal recognition of sAPP alpha. Results: Four different C-terminal forms of sAPP were identified, sAPP beta-M671, sAPP beta-Y681, sAPP alpha-Q686, and 5APP alpha-K687 (APP770 numbering). Neither immunoassay for the sAPP species could separate the two patient groups. The correlation (R-2) between the two immunoassays was 0.41 for sAPP alpha and 0.45 for sAPP beta. Conclusion: Using high resolution MS, we show here for the first time that sAPP alpha in CSF ends at Q686 and K687. The findings also support the conclusion from several previous studies that sAPP alpha and sAPP beta levels are unaltered in AD. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Brinkmalm, Gunnar, et al. (författare)
  • Soluble amyloid precursor protein α and β in CSF in Alzheimer's disease.
  • 2013
  • Ingår i: Brain research. - : Elsevier BV. - 1872-6240 .- 0006-8993. ; 1513, s. 117-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral accumulation of amyloid β (Aβ) is a pathological hallmark of Alzheimer's disease (AD). Proteolytic processing of amyloid precursor protein (APP) by α- or β-secretase results in two soluble metabolites, sAPPα and sAPPβ, respectively. However, previous data have shown that both α- and β-secretase have multiple cleavage sites. The aim of this study was to characterize the C-termini of sAPPα and sAPPβ in cerebrospinal fluid (CSF) by mass spectrometry (MS) and to evaluate whether different combinations of these fragments better separate between AD patients and controls by comparing two different sAPP immunoassays. Methods: Using immunoprecipitation and high resolution MS, the APP species present in CSF were investigated. CSF levels of sAPPα and sAPPβ from patients with AD (n=43) and from non-demented controls (n=44) were measured using AlphaLISA and MSD immunoassays that employ different antibodies for C-terminal recognition of sAPPα. Results: Four different C-terminal forms of sAPP were identified, sAPPβ-M671, sAPPβ-Y681, sAPPα-Q686, and sAPPα-K687 (APP770 numbering). Neither immunoassay for the sAPP species could separate the two patient groups. The correlation (R(2)) between the two immunoassays was 0.41 for sAPPα and 0.45 for sAPPβ. Conclusion: Using high resolution MS, we show here for the first time that sAPPα in CSF ends at Q686 and K687. The findings also support the conclusion from several previous studies that sAPPα and sAPPβ levels are unaltered in AD.
  •  
3.
  • Nutu, Magdalena, 1967, et al. (författare)
  • Aβ1-15/16 as a potential diagnostic marker in neurodegenerative diseases.
  • 2013
  • Ingår i: Neuromolecular medicine. - : Springer Science and Business Media LLC. - 1559-1174 .- 1535-1084. ; 15:1, s. 169-79
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) reflect brain biochemistry. Using combined immunoprecipitation and mass spectrometry, we have shown that amyloid beta 1-15 (Aβ1-15) is produced by concerted β- and α-secretase cleavage of amyloid precursor protein (APP) and that the relative levels of Aβ1-16 in AD compared to controls are increased. Furthermore, drug-induced γ-secretase inhibition enhances the relative levels of Aβ1-15 and Aβ1-16. Here, we investigate a novel immunoassay for Aβ1-15/16 in a broad range of neurodegenerative conditions. The CSF level of Aβ1-15/16 was measured by the bead-based amplified luminescent proximity homogeneous assay (Alpha technology). Concentrations of Aβ1-15/16 were analyzed in subjects with Parkinson disease (PD; n = 90), PD with dementia (PDD) (n = 32), dementia with Lewy bodies (DLB) (n = 68), AD (n = 48), progressive supranuclear palsy (PSP) (n = 45), multiple system atrophy (MSA) (n = 46), and corticobasal degeneration (CBD) (n = 12). The detecting antibody is specific to the C-terminal epitope of Aβ15. We found that a carboxypeptidase (CPB) present in fetal bovine serum (FBS), a component of the buffers used, degrades Aβ1-16 to Aβ1-15, which is then detected by the Aβ1-15/16 assay. Significantly, lower levels of Aβ1-15/16 were detected in PD, PDD, PSP, and MSA compared to other neurodegenerative diseases and controls. Using the specific Aβ1-15/16 assay, a reliable quantification of Aβ1-15 or Aβ1-15/16 in CSF samples is obtained. We found reduced levels of Aβ1-15 in parkinsonian disease groups. The molecular mechanism behind this reduction is at present unknown.
  •  
4.
  • Perera, Minoli A., et al. (författare)
  • Genetic variants associated with warfarin dose in African-American individuals : a genome-wide association study
  • 2013
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 382:9894, s. 790-796
  • Tidskriftsartikel (refereegranskat)abstract
    • Background VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans. Methods We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged >= 18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 -1639G -> A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5x10(-8) in the discovery cohort and p<0.0038 in the replication cohort. Findings The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1.51x10(-8)). This association was confirmed in the replication cohort (p=5.04x10(-5)); analysis of the two cohorts together produced a p value of 4.5x10(-12). Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6.92 mg/week and those homozygous 9.34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement). Interpretation A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy