SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bränström Robert) srt2:(2010-2014)"

Sökning: WFRF:(Bränström Robert) > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berglund, Erik, et al. (författare)
  • Intracellular concentration of the tyrosine kinase inhibitor imatinib in gastrointestinal stromal tumor cells.
  • 2014
  • Ingår i: Anti-Cancer Drugs. - 0959-4973 .- 1473-5741. ; 25:4, s. 415-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastrointestinal stromal tumor (GIST) is the most common mesenchymal neoplasm in the gastrointestinal tract. In most GISTs, the underlying mechanism is a gain-of-function mutation in the KIT or the PDGFRA gene. Imatinib is a tyrosine kinase inhibitor that specifically blocks the intracellular ATP-binding sites of these receptors. A correlation exists between plasma levels of imatinib and progression-free survival, but it is not known whether the plasma concentration correlates with the intracellular drug concentration. We determined intracellular imatinib levels in two GIST cell lines: the imatinib-sensitive GIST882 and the imatinib-resistant GIST48. After exposing the GIST cells to imatinib, the intracellular concentrations were evaluated using LC-MS (TOF). The concentration of imatinib in clinical samples from three patients was also determined to assess the validity and reliability of the method in the clinical setting. Determination of imatinib uptake fits within detection levels and values are highly reproducible. The GIST48 cells showed significantly lower imatinib uptake compared with GIST882 in therapeutic doses, indicating a possible difference in uptake mechanisms. Furthermore, imatinib accumulated in the tumor tissues and showed intratumoral regional differences. These data show, for the first time, a feasible and reproducible technique to measure intracellular imatinib levels in experimental and clinical settings. The difference in the intracellular imatinib concentration between the cell lines and clinical samples indicates that drug transporters may contribute toward resistance mechanisms in GIST cells. This highlights the importance of further clinical studies to quantify drug transporter expression and measure intracellular imatinib levels in GIST patients.
  •  
2.
  • Bränström, Robert, et al. (författare)
  • Electrical short-circuit in β-cells from a patient with non-insulinoma pancreatogenous hypoglycemic syndrome (NIPHS) : a case report
  • 2010
  • Ingår i: Journal of Medical Case Reports. - : Springer Science and Business Media LLC. - 1752-1947. ; 4:1, s. 315-
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Non-insulinoma pancreatogenous hypoglycemic syndrome is a rare disorder among adults, and, to our knowledge, only about 40 cases have been reported in the literature. CASE PRESENTATION: The patient is a previously healthy 35-year-old Caucasian man. His symptoms began four years ago when he suddenly felt weakness in his legs and started sweating for unknown reasons. The symptoms worsened, and laboratory tests revealed hypoglycemia and hyperinsulinemia at the time of the symptoms. All diagnostics attempts using magnetic resonance imaging, computed tomography, and endoscopic ultrasound did not reveal any abnormalities. At this stage, surgical intervention was planned, and a distal 80% pancreatectomy was performed. The histopathologic and immunohistochemical investigations of the pancreas showed an increased number of islets of different sizes, more or less evenly distributed in the gland, but no insulinoma. Patch-clamp recordings from isolated pancreatic β-cells showed that, even at a low glucose concentration (3 mmol/L), the β-cell membrane was depolarized, and action potentials were seen. Surprisingly, in patch-clamp experiments, the addition of diazoxide had a marked effect on K-ATP channel activity and membrane potential, but no effect on insulin levels in vivo before surgery. CONCLUSION: This case report adds new information on the pathogenesis of non-insulinoma pancreatogenous hypoglycemic syndrome, as we performed an electrophysiologic characterization of isolated islet cells. We show, for the first time, that β-cells isolated from a non-insulinoma pancreatogenous hypoglycemic syndrome patient are constantly depolarized, even at low glucose levels, but display normal K-ATP channel physiology.
  •  
3.
  • Lu, Ming, et al. (författare)
  • Expression and association of TRPC subtypes with Orai1 and STIM1 in human parathyroid
  • 2010
  • Ingår i: Journal of Molecular Endocrinology. - 0952-5041 .- 1479-6813. ; 44:5, s. 285-294
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism behind Ca2+ entry into the parathyroid cells has been widely debated, and the molecular identities of the responsible ion channels have not been established yet. In this study, we show that the parathyroid cells lack voltage-operated Ca2+ channels. Passive store depletion by thapsigargin, on the other hand, induces a large non-voltage-activated non-selective cation current. The increase in intracellular Ca2+ caused by thapsigargin is attenuated by 2-aminoethoxydiphenyl borate, a blocker of store-operated Ca2+ entry (SOCE). Candidate molecules for non-voltage-operated Ca2+ signaling were investigated. These included members of the transient receptor potential canonical (TRPC) ion channel family, as well as Ca2+ release-activated Ca2+ modulator 1 (Orai1) and stromal interaction molecule 1 (STIM1) that are key proteins in the SOCE pathway. Using RT-PCR screening, quantitative real-time PCR, and western blot, we showed expression of TRPC1, TRPC4, and TRPC6; Orai1; and STIM1 genes and proteins in normal and adenomatous human parathyroid tissues. Furthermore, co-immunoprecipitation experiments demonstrated a ternary complex of TRPC1-Orai1-STIM1, supporting a physical interaction between these molecules in human parathyroid.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy