SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bröder Lisa) srt2:(2017)"

Sökning: WFRF:(Bröder Lisa) > (2017)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keskitalo, Kirsi, et al. (författare)
  • Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea
  • 2017
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 13:9, s. 1213-1226
  • Tidskriftsartikel (refereegranskat)abstract
    • Thawing of permafrost carbon (PF-C) due to climate warming can remobilise considerable amounts of terrestrial carbon from its long-term storage to the marine environment. PF-C can be then be buried in sediments or remineralised to CO2 with implications for the carbon-climate feedback. Studying historical sediment records during past natural climate changes can help us to understand the response of permafrost to current climate warming. In this study, two sediment cores collected from the East Siberian Sea were used to study terrestrial organic carbon sources, composition and degradation during the past similar to 9500 cal yrs BP. CuO-derived lignin and cutin products (i.e., compounds solely biosynthesised in terrestrial plants) combined with delta C-13 suggest that there was a higher input of terrestrial organic carbon to the East Siberian Sea between similar to 9500 and 8200 cal yrs BP than in all later periods. This high input was likely caused by marine transgression and permafrost destabilisation in the early Holocene climatic optimum. Based on source apportionment modelling using dual-carbon isotope (Delta C-14, Delta C-13) data, coastal erosion releasing old Pleistocene permafrost carbon was identified as a significant source of organic matter translocated to the East Siberian Sea during the Holocene.
  •  
2.
  • Salvadó, Joan A., et al. (författare)
  • Release of Black Carbon From Thawing Permafrost Estimated by Sequestration Fluxes in the East Siberian Arctic Shelf Recipient
  • 2017
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 31:10, s. 1501-1515
  • Tidskriftsartikel (refereegranskat)abstract
    • Black carbon (BC) plays an important role in carbon burial in marine sediments globally. Yet the sequestration of BC in the Arctic Ocean is poorly understood. Here we assess the concentrations, fluxes, and sources of soot BC (SBC)-the most refractory component of BC-in sediments from the East Siberian Arctic Shelf (ESAS), the World's largest shelf sea system. SBC concentrations in the contemporary shelf sediments range from 0.1 to 2.1 mg g(-1) dw, corresponding to 2-12% of total organic carbon. The Pb-210-derived fluxes of SBC (0.42-11 g m(-2) yr(-1)) are higher or in the same range as fluxes reported for marine surface sediments closer to anthropogenic emissions. The total burial flux of SBC in the ESAS (similar to 4,000 Gg yr(-1)) illustrates the great importance of this Arctic shelf in marine sequestration of SBC. The radiocarbon signal of the SBC shows more depleted yet also more uniform signatures (-721 to -896%; average of -774 +/- 62%) than of the non-SBC pool (-304 to -728%; average of -491 +/- 163%), suggesting that SBC is coming from an, on average, 5,900 +/- 300 years older and more specific source than the non-SBC pool. We estimate that the atmospheric BC input to the ESAS is negligible (similar to 0.6% of the SBC burial flux). Statistical source apportionment modeling suggests that the ESAS sedimentary SBC is remobilized by thawing of two permafrost carbon (PF/C) systems: surface soil permafrost (topsoil/PF; 25 +/- 8%) and Pleistocene ice complex deposits (ICD/PF; 75 +/- 8%). The SBC contribution to the total mobilized permafrost carbon (PF/C) increases with increasing distance from the coast (from 5 to 14%), indicating that the SBC is more recalcitrant than other forms of translocated PF/C. These results elucidate for the first time the key role of permafrost thaw in the transport of SBC to the Arctic Ocean. With ongoing global warming, these findings have implications for the biogeochemical carbon cycle, increasing the size of this refractory carbon pool in the Arctic Ocean.
  •  
3.
  • Tesi, Tommaso, et al. (författare)
  • Carbon geochemistry of plankton-dominated samples in the Laptev and East Siberian shelves : contrasts in suspended particle composition
  • 2017
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 13:5, s. 735-748
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent Arctic studies suggest that sea ice decline and permafrost thawing will affect phytoplankton dynamics and stimulate heterotrophic communities. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we investigate the chemical signature of the plankton-dominated fraction of particulate organic matter (POM) collected along the Siberian Shelf. POM (>10 mu m) samples were analysed using molecular biomarkers (CuO oxidation and IP25 ) and dual-carbon isotopes (delta C-13 and Delta C-14). In addition, surface water chemical properties were integrated with the POM (>10 mu m) dataset to understand the link between plankton composition and environmental conditions. delta C-13 and Delta C-14 exhibited a large variability in the POM (> 10 mu m) distribution while the content of terrestrial biomarkers in the POM was negligible. In the Laptev Sea (LS), delta C-13 and Delta C-14 of POM (> 10 mu m) suggested a heterotrophic environment in which dissolved organic carbon (DOC) from the Lena River was the primary source of metabolisable carbon. Within the Lena plume, terrestrial DOC probably became part of the food web via bacteria uptake and subsequently transferred to relatively other heterotrophic communities (e.g. dinoflagellates). Moving eastwards toward the sea-ice-dominated East Siberian Sea (ESS), the system became progressively more autotrophic. Comparison between delta C-13 of POM (> 10 mu m) samples and CO(2)aq concentrations revealed that the carbon isotope fractionation increased moving towards the easternmost and most productive stations. In a warming scenario characterised by enhanced terrestrial DOC release (thawing permafrost) and progressive sea ice decline, heterotrophic conditions might persist in the LS while the nutrient-rich Pacific inflow will likely stimulate greater primary productivity in the ESS. The contrasting trophic conditions will result in a sharp gradient in delta C-13 between the LS and ESS, similar to what is documented in our semi-synoptic study.
  •  
4.
  • Vonk, Jorien E., et al. (författare)
  • Distinguishing between old and modern permafrost sources in the northeast Siberian land-shelf system with compound-specific delta H-2 analysis
  • 2017
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 11:4, s. 1879-1895
  • Tidskriftsartikel (refereegranskat)abstract
    • Pleistocene ice complex permafrost deposits contain roughly a quarter of the organic carbon (OC) stored in permafrost (PF) terrain. When permafrost thaws, its OC is remobilized into the (aquatic) environment where it is available for degradation, transport or burial. Aquatic or coastal environments contain sedimentary reservoirs that can serve as archives of past climatic change. As permafrost thaw is increasing throughout the Arctic, these reservoirs are important locations to assess the fate of remobilized permafrost OC. We here present compound-specific deuterium (delta H-2) analysis on leaf waxes as a tool to distinguish between OC released from thawing Pleistocene permafrost (ice complex deposits; ICD) and from thawing Holocene permafrost (from near-surface soils). Bulk geochemistry (%OC; delta C-13; % total nitrogen, TN) was analyzed as well as the concentrations and delta H-2 signatures of long-chain n-alkanes (C-21 to C-33) and midto long-chain n-alkanoic acids (C-16 to C-30) extracted from both ICD-PF samples (n = 9) and modern vegetation and Ohorizon (topsoil-PF) samples (n = 9) from across the northeast Siberian Arctic. Results show that these topsoil-PF samples have higher %OC, higher OC/TN values and more depleted delta(COC)-C-13 values than ICD-PF samples, suggesting that these former samples trace a fresher soil and/or vegetation source. Whereas the two investigated sources differ on the bulk geochemical level, they are, however, virtually indistinguishable when using leaf wax concentrations and ratios. However, on the molecular isotope level, leaf wax biomarker delta H-2 values are statistically different between topsoil PF and ICD PF. For example, the mean delta H-2 value of C-29 n-alkane was -246 +/- 13% (mean +/- SD) for topsoil PF and -280 +/- 12 parts per thousand for ICD PF. With a dynamic isotopic range (difference between two sources) of 34 to 50 parts per thousand; the isotopic fingerprints of individual, abundant, biomarker molecules from leaf waxes can thus serve as endmembers to distinguish between these two sources. We tested this molecular delta H-2 tracer along with another source-distinguishing approach, dual-carbon (delta C-13-Delta C-14) isotope composition of bulk OC, for a surface sediment transect in the Laptev Sea. Results show that general offshore patterns along the shelfslope transect are similar, but the source apportionment between the approaches vary, which may highlight the advan-tages of either. This study indicates that the application of delta H-2 leaf wax values has potential to serve as a complementary quantitative measure of the source and differential fate of OC thawed out from different permafrost compartments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy