SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brant William) srt2:(2020-2024)"

Sökning: WFRF:(Brant William) > (2020-2024)

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tapia-Ruiz, Nuria, et al. (författare)
  • 2021 roadmap for sodium-ion batteries
  • 2021
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid-electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology.
  •  
2.
  • Boras, Dominik, et al. (författare)
  • Determining internal porosity in Prussian blue analogue cathode materials using positron annihilation lifetime spectroscopy
  • 2023
  • Ingår i: Journal of Materials Science. - : Springer Nature. - 0022-2461 .- 1573-4803. ; 58:42, s. 16344-16356
  • Tidskriftsartikel (refereegranskat)abstract
    • Prussian blue analogues (PBAs), AxM[M’(CN)6]1–y·zH2O, are a highly functional class of materials with use in a broad range of applications, such as energy storage, due to their porous structure and tunable composition. The porosity is particularly important for the properties and is deeply coupled to the cation, water, and [M’(CN)6]n– vacancy content. Determining internal porosity is especially challenging because the three compositional parameters are dependent on each other. In this work, we apply a new method, positron annihilation lifetime spectroscopy (PALS), which can be employed for the characterization of defects and structural changes in crystalline materials. Four samples were prepared to evaluate the method’s ability to detect changes in internal porosity as a function of the cation, water, and [M’(CN)6]n– vacancy content. Three of the samples have identical [M’(CN)6]n– vacancy content and gradually decreasing sodium and water content, while one sample has no sodium and 25% [M’(CN)6]n– vacancies. The samples were thoroughly characterized using inductively coupled plasma-optical emission spectroscopy (ICP-OES), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Mössbauer spectroscopy as well as applying the PALS method. Mössbauer spectroscopy, XRD, and TGA analysis revealed the sample compositions Na1.8(2)Fe2+0.64(6)Fe2.6+0.36(10)[Fe2+(CN)6]·2.09(2)H2O, Na1.1(2)Fe2+0.24(6)Fe2.8+0.76(6)[Fe2.3+(CN)6]·1.57(1)H2O, Fe[Fe(CN)6]·0.807(9)H2O, and Fe[Fe(CN)6]0.75·1.5H2O, confirming the absence of vacancies in the three main samples. It was shown that the final composition of PBAs could only be unambiguously confirmed through the combination of ICP, XRD, TGA, and Mössbauer spectroscopy. Two positron lifetimes of 205 and 405 ps were observed with the 205 ps lifetime being independent of the sodium, water, and/or [Fe(CN)6]n– vacancy content, while the lifetime around 405 ps changes with varying sodium and water content. However, the origin and nature of the 405 ps lifetime yet remains unclear. The method shows promise for characterizing changes in the internal porosity in PBAs as a function of the composition and further development work needs to be carried out to ensure the applicability to PBAs generally.
  •  
3.
  • Boström, Hanna, et al. (författare)
  • Octahedral tilting in Prussian blue analogues
  • 2022
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 10:37, s. 13690-13699
  • Tidskriftsartikel (refereegranskat)abstract
    • Octahedral tilting is key to the structure and functionality of perovskites. We present a metastudy of published literature showing how these distortions manifest in the related Prussian blue analogues (PBAs): cyanide versions of double perovskites with formula AM[M '(CN)(6)](1-y)(y)center dot nH(2)O (A = alkali metal, M and M ' = transition metals, = vacancy/defect). Tilts are favoured by high values of x if A = Na or K, whereas the transition metals play a less important role. External hydrostatic pressure induces tilt transitions nearly irrespective of the stoichiometry, whereas thermal transitions are only reported for x > 1. Interstitial water can alter the transitions induced by a different stimulus, but (de)hydration per se does not lead to tilts. Finally, the implications for rational design of critical functionality-including improper ferroelectricity and electrochemical performance-are discussed. The results are integral for a fundamental understanding of phase transitions and for the development of functional materials based on PBAs.
  •  
4.
  • Brant, William R., et al. (författare)
  • Local structure transformations promoting high lithium diffusion in defect perovskite type structures
  • 2023
  • Ingår i: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 441
  • Tidskriftsartikel (refereegranskat)abstract
    • Defect perovskites, AxBO3 such as (Li3xLa2/3-x)TiO3, are attracting attention as high capacity electrodes in lithium-ion batteries. However, the mechanism enabling high lithium storage capacities has not been fully investigated. In this work, the reversible insertion and removal of lithium up to an average A-site cavity occupancy of 1.71 in the defect perovskite (Li0.18Sr0.66)(Ti0.5Nb0.5)O3 is investigated. It was shown that subtle lithium reorganization during lithiation has a significant impact on enabling high capacity. Contrary to previous studies, lithium was coordinated to triangular faces of Ti/Nb oxygen octahedra and offset from O4 windows between A-site cavities in the as-synthesised material. Upon electrochemical lithiation Li-Li repulsion redistributes of all the lithium towards the O4 window position resulting in a loss of lithium mobility. Surprisingly, the mobility is regained during over-lithiation and following multiple electrochemical cycles. It is suggested that lithium reorganisation into the center of the O4 window alleviates the Li-Li repulsion and modifies the diffusion behavior from site percolation to bond percolation. The results obtained provide valuable insight into the chemical drivers enabling higher capacities and enhanced diffusion in defect perovskites. More broadly the study delivers fundamental understanding on the non-equilibrium structural transformations occurring within electrode materials during repeated electrochemical cycles.
  •  
5.
  • Chen, Heyin, et al. (författare)
  • Investigating Surface Reactivity of a Ni-Rich Cathode Material toward CO2, H2O, and O2 Using Ambient Pressure X-ray Photoelectron Spectroscopy
  • 2023
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 6:22, s. 11458-11467
  • Tidskriftsartikel (refereegranskat)abstract
    • Layered Ni-rich transition metal oxide materials are considered the most promising cathodes for use in commercial Li-ion batteries. Due to their instability in air, an impurity layer forms during storage under ambient conditions, and this layer increases electrochemical polarization during charging and discharging, which ultimately leads to a lower cycling capacity. In this work, we found that storage of the LiNi0.8Mn0.1Co0.1O2 (NMC 811) material in ultrahigh vacuum (UHV) can restore the surface by reducing the amount of native carbonate species in the impurity layer. In this work, in situ soft X-ray ambient pressure photoelectron spectroscopy is used to directly follow the interaction between common gases found in air and the NMC 811 surface. During gas exposure of the NMC 811 surface to pure CO2, O2, and a mixture of both pure gases, surface-adsorbed CO2 or/and O2 were detected; however, permanent changes could not be identified under UHV after the gas exposure. In contrast, a permanent increase in metal hydroxide species was observed on the sample surface following H2O vapor exposure, and an increased intensity in the carboxylate peak was observed after exposure to a mixture of CO2/O2/H2O. Thus, the irreversible degradation reaction with CO2 is triggered in the presence of H2O (on relevant time scales defined by the experiment). Additional measurements revealed that X-ray irradiation induces the formation of metal carbonate species on the NMC 811 surface under CO2 and H2O vapor pressure.
  •  
6.
  • Chien, Yu-Chuan, 1990-, et al. (författare)
  • Impact of Compression on the Electrochemical Performance of the Sulfur/Carbon Composite Electrode in Lithium-Sulfur Batteries
  • 2022
  • Ingår i: Batteries & Supercaps. - : Wiley-VCH Verlagsgesellschaft. - 2566-6223. ; 5:7
  • Tidskriftsartikel (refereegranskat)abstract
    • While lithium-sulfur batteries theoretically have both high gravimetric specific energy and volumetric energy density, only its specific energy has been experimentally demonstrated to surpass that of the state-of-the-art lithium-ion systems at cell level. One major reason for the unrealized energy density is the low capacity density of the highly porous sulfur/carbon composite as the positive electrode. In this work, mechanical compression at elevated temperature is demonstrated to be an effective method to increase the capacity density of the electrode by at least 90 % and moreover extends its cycle life. Distinct impacts of compression on the resistance profiles of electrodes with different thickness are investigated by tortuosity factors derived from both electrochemical impedance spectroscopy, X-ray computed tomography and kinetic analysis based on operando X-ray diffraction. The results highlights the importance of a homogeneous electrode structure highlight lithium-sulfur system.
  •  
7.
  • Chien, Yu-Chuan, 1990-, et al. (författare)
  • Rapid determination of solid-state diffusion coefficients in Li-based batteries via intermittent current interruption method
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The galvanostatic intermittent titration technique (GITT) is considered the go-to method for determining the Li+ diffusion coefficients in insertion electrode materials. However, GITT-based methods are either time-consuming, prone to analysis pitfalls or require sophisticated interpretation models. Here, we propose the intermittent current interruption (ICI) method as a reliable, accurate and faster alternative to GITT-based methods. Using Fick’s laws, we prove that the ICI method renders the same information as the GITT within a certain duration of time since the current interruption. Via experimental measurements, we also demonstrate that the results from ICI and GITT methods match where the assumption of semi-infinite diffusion applies. Moreover, the benefit of the non-disruptive ICI method to operando materials characterization is exhibited by correlating the continuously monitored diffusion coefficient of Li+ in a LiNi0.8Mn0.1Co0.1O2-based electrode to its structural changes captured by operando X-ray diffraction measurements.
  •  
8.
  • Chien, Yu-Chuan, 1990-, et al. (författare)
  • Simultaneous Monitoring of Crystalline Active Materials and Resistance Evolution in Lithium-Sulfur Batteries
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 142:3, s. 1449-1456
  • Tidskriftsartikel (refereegranskat)abstract
    • Operando X-ray diffraction (XRD) is a valuable tool for studying secondary battery materials as it allows for the direct correlation of electrochemical behavior with structural changes of crystalline active materials. This is especially true for the lithium-sulfur chemistry, in which energy storage capability depends on the complex growth and dissolution kinetics of lithium sulfide (Li2S) and sulfur (S-8) during discharge and charge, respectively. In this work, we present a novel development of this method through combining operando XRD with simultaneous and continuous resistance measurement using an intermittent current interruption (ICI) method. We show that a coefficient of diffusion resistance, which reflects the transport properties in the sulfur/carbon composite electrode, can be determined from analysis of each current interruption. Its relationship to the established Warburg impedance model is validated theoretically and experimentally. We also demonstrate for an optimized electrode formulation and cell construction that the diffusion resistance increases sharply at the discharge end point, which is consistent with the blocking of pores in the carbon host matrix. The combination of XRD with ICI allows for a direct correlation of structural changes with not only electrochemical properties but also energy loss processes at a nonequilibrium state and, therefore, is a valuable technique for the study of a wide range of energy storage chemistries.
  •  
9.
  • Chien, Yu-Chuan, 1990-, et al. (författare)
  • Understanding the Impact of Precipitation Kinetics on the Electrochemical Performance of Lithium–Sulfur Batteries by Operando X-ray Diffraction
  • 2022
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 126:6, s. 2971-2979
  • Tidskriftsartikel (refereegranskat)abstract
    • The complex reaction mechanism of the lithium–sulfur battery system consists of re-petitive dissolution and precipitation of the sulfur-containing species in the positiveelectrode. In particular, the precipitation of lithium sulfide (Li2S) during discharge hasbeen considered a crucial factor for achieving a high degree of active material utiliza-tion. Here, the influence of electrolyte amount, electrode thickness, applied current andelectrolyte salt on the formation of Li2S is systematically investigated in a series ofoperando X-ray diffraction experiments. Through a combination of simultaneous dif-fraction and resistance measurements, the evolution of the intensity from Li2S is di-rectly correlated to the variation in internal resistance and transport properties insidethe positive electrode. The correlation indicates that at different stages, the Li2S precip-itation both facilitates and impedes the discharge process. The kinetic information ofLi2S formation offers mechanistic explanations for the strong impact of different elec-trochemical cell parameters on the performance and thus, directions for holistic optimi-zations to achieve high sulfur utilization.
  •  
10.
  • Ericsson, Tore, et al. (författare)
  • Investigation of Valence Mixing in Sodium-Ion Battery Cathode Material Prussian White by Mossbauer Spectroscopy
  • 2022
  • Ingår i: Frontiers in Energy Research. - : Frontiers Media S.A.. - 2296-598X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Prussian white (PW), Na2Fe [Fe(CN)(6)], is a highly attractive cathode material for sustainable sodium-ion batteries due to its high theoretical capacity of similar to 170 mAhg(-1) and low-cost synthesis. However, there exists significant variability in the reported electrochemical performance. This variability originates from compositional flexibility possible for all Prussian blue analogs (PBAs) and is exasperated by the difficulty of accurately quantifying the specific composition of PW. This work presents a means of accurately quantifying the vacancy content, valence distribution, and, consequently, the overall composition of PW via Mossbauer spectroscopy. PW cathode material with three different sodium contents was investigated at 295 and 90 K. The observation of only two iron environments for the fully sodiated compound indicated the absence of [Fe(CN)(6)](4-) vacancies. Due to intervalence charge transfer between iron centers at 295 K, accurate determination of valences was not possible. However, by observing the trend of spectral intensities and center shift for the nitrogen-bound and carbon-bound iron, respectively, at 90 K, valence mixing between the iron sites could be quantified. By accounting for valence mixing, the sum of iron valences agreed with the sodium content determined from elemental analysis. Without an agreement between the total valence sum and the determined composition, there exists uncertainty around the accuracy of the elemental analysis and vacancy content determination. Thus, this study offers one more stepping stone toward a more rigorous characterization of composition in PW, which will enable further optimization of properties for battery applications. More broadly, the approach is valuable for characterizing iron-based PBAs in applications where precise composition, valence determination, and control are desired.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32
Typ av publikation
tidskriftsartikel (28)
doktorsavhandling (3)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Brant, William (17)
Brant, William R. (14)
Ericsson, Tore (6)
Edström, Kristina, P ... (6)
Häggström, Lennart (6)
Brandell, Daniel, 19 ... (6)
visa fler...
Lacey, Matthew J. (5)
Chien, Yu-Chuan, 199 ... (5)
Younesi, Reza (4)
Mogensen, Ronnie (4)
Hahlin, Maria (3)
Naylor, Andrew J. (3)
Kullgren, Jolla, 197 ... (2)
Ahmed, Istaq (2)
Lacey, Matthew (2)
Nielsen, Ida, 1996- (2)
Riekehr, Lars (1)
Johansson, Patrik, 1 ... (1)
Henry, Paul F. (1)
Salazar-Alvarez, Ger ... (1)
Smith, Alexander J. (1)
Hernández, Guiomar (1)
Berg, Erik (1)
Svedlindh, Peter (1)
Svensson, Mikael (1)
Sen, S. (1)
Fichtner, Maximilian (1)
Jaworski, Aleksander ... (1)
Hall, Stephen (1)
Thersleff, Thomas, 1 ... (1)
Boström, Hanna (1)
Nyholm, Leif, 1961- (1)
Zhang, Chao (1)
Lewin, Erik, 1979- (1)
Kantor, Innokenty (1)
Armstrong, A Robert (1)
Maibach, Julia (1)
Garcia-Araez, Nuria (1)
Costa, Luciano T. (1)
Chhowalla, Manish (1)
Willhammar, Tom (1)
Baur, Christian (1)
Källquist, Ida (1)
Svensson, Gunnar, 19 ... (1)
Lindblad, Rebecka, D ... (1)
Ericson, Tove, 1983- (1)
Irvine, John T. S. (1)
Kokkonen, Esko (1)
Boras, Dominik (1)
Buckel, Alexander (1)
visa färre...
Lärosäte
Uppsala universitet (32)
Lunds universitet (3)
Stockholms universitet (2)
Kungliga Tekniska Högskolan (1)
Chalmers tekniska högskola (1)
Språk
Engelska (32)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (31)
Teknik (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy