SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Braunbeck Thomas) srt2:(2002-2004)"

Sökning: WFRF:(Braunbeck Thomas) > (2002-2004)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klee, Nina, et al. (författare)
  • Changes in toxicity and genotoxicity of industrial sewage sludge samples containing nitro- and amino-aromatic compounds following treatment in bioreactors with different oxygen regimes
  • 2004
  • Ingår i: Environmental Science and Pollution Research. - 0944-1344 .- 1614-7499. ; 11:5, s. 313-320
  • Tidskriftsartikel (refereegranskat)abstract
    • GOALS, SCOPE AND BACKGROUND: From 2005, deposition of organic waste will be banned in Sweden. Likewise, in Germany and Austria, similar bans are being planned, and further countries will probably follow. Thus, there is a need to develop new methods and to refine established techniques for sludge management in the whole of the European Union. For this end, there is also an urgent need for appropriate ecotoxicological approaches to elucidate and assess the hazard potential of sewage sludge. Therefore, the present study was designed to assess the capacity of various established sludge treatment methods using different oxygen regimes to degrade recalcitrant nitro-substituted organic compounds and reduce their toxicity. Sewage sludge samples from a wastewater treatment plant in Sweden (Cambrex Karlskoga AB, industrial area Björkborn) receiving wastewater from industries manufacturing pharmaceutical substances, chemical intermediates and explosives were processed with different sludge treatment methods. Among other treatment methods, bioreactors (for anaerobic and aerobic sludge treatment) were used. In the present investigation, a battery of in vitro bioassays was employed to compare the cytotoxic and genotoxic potentials of different fractions of sludge samples in order to elucidate whether the treatments were suitable to reduce the toxicity of the sludge. METHODS: In order to investigate the cytotoxicity of the extracts of treated and untreated sludge samples, the acute cytotoxicity test with the permanent cell line RTL-W1 was used. Genotoxicity was tested by means of the comet assay (single cell gel electrophoresis) with RTL-W1 cells, and mutagenicity was assessed with the Ames test using the Salmonella typhimurium strains TA98, TA98NR and TA100. Sludge toxicity was tested in different fractions of organic extracts produced by acetone and hexane extractions. The subsequent clean-up procedure (silica gel chromatography and elution with hexane and dichloromethane) resulted in two fractions, a lipophilic hexane-fraction and a semi-lipophilic dichloromethane-fraction. For the genotoxicity and mutagenicity tests, these fractions were reunited at equal ratios. RESULTS AND DISCUSSION: The acute cytotoxicity test with RTL-W1 cells revealed a high cytotoxic potential for the semi-lipophilic DM-fractions of all sludge samples with NR50 values (= effective concentration for 50% cell death in the neutral red test) from 8.9 up to 20 mg sludge d.w./ml medium. A low cytotoxic potential for the hexane fractions of the untreated sludge samples (NR50 400 to > 400 mg sludge d.w./ml medium) was observed, whereas the hexane fractions of the treated sludge samples showed elevated cytotoxicity increasing further with treatment in the bioreactors. The comet assay indicated that three out of eight of the reunited fractions had a significant genotoxic potential. Whereas the genotoxic potential of one sample treated anaerobically was very high with an induction factor of 11.6, a similar sample (taken from the same anaerobic reactor four months later) and one untreated sample showed lower potentials. The samples treated in another anaerobic bioreactor as well as the samples treated aerobically showed no genotoxic potential. Results indicate that aerobic treatment was basically adequate for reducing the genotoxicity of the sludge, whereas anaerobic treatment was only partly useful for reduction of genotoxicity. The Ames test revealed a very high mutagenic potential for the reunited fractions of the untreated sludge samples with strain TA98 (maximum induction factors (IFmax) up to 45) and a relatively high potential for one of the samples treated aerobically (S2, IFmax = 18 (TA98, S9-)), thus documenting the suitability of both anaerobic and aerobic treatments to reduce the mutagenicity of the samples, however, with the aerobic treatment being less effective. CONCLUSIONS: Overall, none of the microbiological treatments for wastewater sludge in bioreactors was found to be ideal for general toxicity reduction of the sludge samples. Whereas cytotoxicity of the sludge increased or levelled off in most cases following either treatment, genotoxicity both increased or decreased after anaerobic treatment, depending on the specific sample. However, mutagenicity could generally be reduced by anaerobic treatment and, to a lesser degree, by aerobic treatment. RECOMMENDATIONS AND PERSPECTIVES: The complex modification of the diverse damage potentials of sludge sample extracts by use of an in vitro biotest battery following treatment for toxicity reduction in bioreactors showed that considerations of different toxicological endpoints is essential for an adequate hazard assessment. Whereas in the case of cytotoxicity reduction, the reactors proved ineffective, mutagenicity could be reduced significantly at least in some cases in this case study.
  •  
2.
  • Hollert, Henner, et al. (författare)
  • A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos
  • 2003
  • Ingår i: Journal of Soils and Sediments. - : Springer Science and Business Media LLC. - 1439-0108 .- 1614-7480. ; 3:3, s. 197-207
  • Tidskriftsartikel (refereegranskat)abstract
    • Goal, Scope and Background. Based on a bioassay battery coveringonly primary producers and consumers as well as degraders, the potential ecological hazard of sediments to vertebrates cannot be estimated comprehensively. Therefore, there is an urgent need to develop and standardize integrated vertebrate-based test systems for sediment investigation strategies. Whereas vertebrate-based in vitro systems have frequently been used for the investigation of aqueous samples, there is a significant lack of whole sediment assays. Thus, the purpose of the present study was: (1)to develop a rapid and reliable, but comprehensive method to investigate native sediments and particulate matters without preceding extraction procedures; (2) to compare the hazard potential of solid phase sediments to the effects of corresponding pore waters and organic extracts in order to characterize the bioavailability of the particle-bound pollutants; and (3) to relatively evaluate the embryotoxic effects of sediments from the catchment areas of the rivers Rhine, Neckar and Danube.Methods (or Main Features). To investigate the toxicity of sediment samples on vertebrates, the standard embryo toxicity test with the zebrafish (Danio rerio; Hamilton-Buchanan 1922) according to DIN 38415-6 was modified with respect to exposure scheme and toxicological endpoints. Sediments from the catchment area of the Neckar River were assessed using pore waters, acetonic extracts and native sediments in order to get inside into the potential bioavailability of particle-bound pollutants. A comprehensive test protocol for the investigation of native sediments in the embryo toxicity test with the zebrafish is presented.Results and Discussion. The fish embryo assay with Danio rerio can be carried out with both aqueous and organic sediment extracts as well as native (whole, solid phase) sediment samples. Elongation of exposure time from 48 to up to 196 h significantly increased the mortality. Using the fish egg assay with native sediments, a broad range of embryotoxic effects could be elucidated, including clear-cut dose-response curves for the embryotoxic effects of contaminated sediments; in contrast, absence ofembryotoxic effects could be demonstrated even for the highest test concentrations of unpolluted sediments. With native sediments, embryotoxicity was clearly higher than with corresponding pore waters, thus corroborating the view that – at least for fish eggs – the bioavailability of particle-bound lipophilic substances in native sediments is higher than generally assumed. The relative ranking of sediment toxicity was identical using both native sediments and sediment extracts, EC20 values of the latter, however, being eight time lower higher than with the native sediments. A comparison of the embryo toxic effects of samples from the Neckar area with locations along the Rhine and Danube rivers elucidated a broad range of results, thus indicating different levels of contamination.Conclusions. A modified protocol of the zebrafish embryo test allows the assessment of sediment toxicity in both aqueous extracts and native sediments. The isolated investigation of pore waters may result in a clear-cut underestimation of the bioavailability of lipophilic particle-bound substances (as determined by native sediments).Recommendations and Perspectives. The zebrafish embryo test with native (whole, solid phase) sediments appears very promising for the evaluation of the bioavailable fraction of lipophilicparticle-bound substances and can therefore be recommended for the evaluation of vertebrate toxicity in tiered sediment test strategies and dredging directives such as the HABAB-WSV. Whereas acetone extracts may be tested as a rough estimation of embryotoxicity, native sediment samples will provide a more comprehensive and realistic insight into the bioavailable hazard potential
  •  
3.
  • Hollert, Henner, et al. (författare)
  • Biological and Chemical Determination of Dioxin-like Compounds in Sediments by Means of a Sediment Triad Approach in the Catchment Area of the River Neckar
  • 2002
  • Ingår i: Ecotoxicology. - 0963-9292 .- 1573-3017. ; 11:5, s. 323-36
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate the sediment quality of selected sites in the catchment area of the River Neckar, an integrative assessment approach was used to assess the ecological hazard potential of dioxin-like sediment compounds. The approach is based on 7-ethoxyresorufin-O -deethylase (EROD) induction in embryonic chicken liver culture and comprehensive chemical analyses of polycyclic aromatic hydrocarbons (priority PAHs according to the US Environmental Protection Agency). The majority of the sediment extracts exhibited high potencies as EROD-inducers. In one sediment sample, which was influenced by a sewage treatment plant, a very high concentration of 930 ng bioassay 2,3,7,8-tetrachlorodibenzo-p -dioxin (TCDD) equivalents (bio-TEQs )/g organic carbon could be determined. However, in none of the samples, more than 6% of the EROD-inducing potency could be explained by the PAHs analyzed chemically. Thus, non-analyzed compounds with EROD-inducing potency were present in the extracts. A fractionation of sediment samples according to pH allowed to localize the major part of EROD-inducing compounds in the neutral fractions. However, a significant portion of the EROD induction could also be explained by the acidic fractions. Following the concept of the Sediment Quality Triad according to Chapman, in situ alterations of macrozoobenthos were examined. A comparison of the results predicted by the EROD assay and chemical analyses with alterations in situ , as measured by means of the saprobic index and the ecotoxicological index according to Carmargo, revealed a high ecological relevance of the results of bioassays and chemical analyses for major sites.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy