SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bray S.) srt2:(2010-2014)"

Sökning: WFRF:(Bray S.) > (2010-2014)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Appeltans, W., et al. (författare)
  • The Magnitude of Global Marine Species Diversity
  • 2012
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 22:23, s. 2189-2202
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are similar to 226,000 eukaryotic marine species described. More species were described in the past decade (similar to 20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are similar to 170,000 synonyms, that 58,000-72,000 species are collected but not yet described, and that 482,000-741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7-1.0 million marine species. Past rates of description of new species indicate there may be 0.5 +/- 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century.
  •  
2.
  • Charlton, M, et al. (författare)
  • Antiparticle sources for antihydrogen production and trapping
  • 2011
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6596. ; 262, s. 012001-
  • Tidskriftsartikel (refereegranskat)abstract
    • Sources of positrons and antiprotons that are currently used for the formation of antihydrogen with low kinetic energies are reviewed, mostly in the context of the ALPHA collaboration and its predecessor ATHENA. The experiments were undertaken at the Antiproton Decelerator facility, which is located at CERN. Operations performed on the clouds of antiparticles to facilitate their mixing to produce antihydrogen are described. These include accumulation, cooling and manipulation. The formation of antihydrogen and some of the characteristics of the anti-atoms that are created are discussed. Prospects for trapping antihydrogen in a magnetic minimum trap, as envisaged by the ALPHA collaboration, are reviewed.
  •  
3.
  • Andresen, G. B., et al. (författare)
  • Search for trapped antihydrogen
  • 2011
  • Ingår i: Physics Letters B. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 695:1-4, s. 95-104
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 107 antiprotons with 1.3ï¿œ109 positrons to produce 6ï¿œ105 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.
  •  
4.
  • Brownstein, Catherine A., et al. (författare)
  • An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
  • 2014
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 15:3, s. R53-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
  •  
5.
  • Madsen, N, et al. (författare)
  • Search for trapped antihydrogen in ALPHA
  • 2011
  • Ingår i: Canadian journal of physics (Print). - 0008-4204 .- 1208-6045. ; 89:1, s. 7-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Antihydrogen spectroscopy promises precise tests of the symmetry of matter and antimatter, and can possibly offer new insights into the baryon asymmetry of the universe. Antihydrogen is, however, difficult to synthesize and is produced only in small quantities. The ALPHA collaboration is therefore pursuing a path towards trapping cold antihydrogen to permit the use of precision atomic physics tools to carry out comparisons of antihydrogen and hydrogen. ALPHA has addressed these challenges. Control of the plasma sizes has helped to lower the influence of the multipole field used in the neutral atom trap, and thus lowered the temperature of the created atoms. Finally, the first systematic attempt to identify trapped antihydrogen in our system is discussed. This discussion includes special techniques for fast release of the trapped anti-atoms, as well as a silicon vertex detector to identify antiproton annihilations. The silicon detector reduces the background of annihilations, including background from antiprotons that can be mirror trapped in the fields of the neutral atom trap. A description of how to differentiate between these events and those resulting from trapped antihydrogen atoms is also included.
  •  
6.
  • Thorn, D. B., et al. (författare)
  • Polarization and anisotropic emission of K-shell radiation from heavy few electron ions
  • 2011
  • Ingår i: Canadian journal of physics (Print). - 0008-4204 .- 1208-6045. ; 89:5, s. 513-519
  • Tidskriftsartikel (refereegranskat)abstract
    • The population of magnetic sublevels in hydrogen-like uranium ions has been investigated in relativistic ion-atom collisions by observing the subsequent X-ray emission. Using the gas target at the experimental storage ring facility we observed the angular emission of Lyman-alpha radiation from hydrogen-like uranium ions. The alignment parameter for three different interaction energies was measured and found to agree well with theory. In addition, the use of different gas targets allowed for the electron-impact excitation process to be observed.
  •  
7.
  • Van Der Werf, D. P., et al. (författare)
  • Antimatter transport processes
  • 2010
  • Ingår i: AAPS Journal. - : IOP Publishing. - 1550-7416. ; 257:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A comparison of the 1S-2S transitions of hydrogen and antihydrogen will yield a stringent test of CPT conservation. Necessarily, the antihydrogen atoms need to be trapped to perform high precision spectroscopy measurements. Therefore, an approximately 0.75 T deep neutral atom trap, equivalent to about 0.5 K for ground state (anti)hydrogen atoms, has been superimposed on a Penning-Malmberg trap in which the anti-atoms are formed. The antihydrogen atoms are produced following a number of steps. A bunch of antiprotons from the CERN Antiproton Decelerator is caught in a Penning-Malmberg trap and subsequently sympathetically cooled and then compressed using rotating wall electric fields. A positron plasma, formed in a separate accumulator, is transported to the main system and also compressed. Antihydrogen atoms are then formed by mixing the antiprotons and positrons. The velocity of the anti-atoms, and their binding energies, will strongly depend on the initial conditions of the constituent particles, for example their temperatures and densities, and on the details of the mixing process. In this paper the complete lifecycle of antihydrogen atoms will be presented, starting with the production of the constituent antiparticles and the description of the manipulations necessary to prepare them appropriately for antihydrogen formation. The latter will also be described, as will the possible fates of the anti-atoms.
  •  
8.
  • Fuchs, M.a b, et al. (författare)
  • Nonlinear X-ray compton scattering
  • 2014
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We use XFEL pulses to observe the most fundamental nonlinear X-ray-matter interaction: nonlinear Compton scattering. In contrast to theoretical predictions, we measure an anonymous and yet to be explained red-shift in the observed photon energy.
  •  
9.
  • Butler, E., et al. (författare)
  • Towards antihydrogen trapping and spectroscopy at ALPHA
  • 2011
  • Ingår i: Hyperfine Interactions. - : Springer Science and Business Media LLC. - 0304-3843 .- 1572-9540. ; 199:1, s. 39-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectroscopy of antihydrogen has the potential to yield high-precision tests of the CPT theorem and shed light on the matter-antimatter imbalance in the Universe. The ALPHA antihydrogen trap at CERN’s Antiproton Decelerator aims to prepare a sample of antihydrogen atoms confined in an octupole-based Ioffe trap and to measure the frequency of several atomic transitions. We describe our techniques to directly measure the antiproton temperature and a new technique to cool them to below 10 K. We also show how our unique position-sensitive annihilation detector provides us with a highly sensitive method of identifying antiproton annihilations and effectively rejecting the cosmic-ray background.
  •  
10.
  • Beurskens, M N A, et al. (författare)
  • H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET
  • 2011
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 18:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Multidevice pedestal scaling experiments in the DIII-D, ASDEX Upgrade (AUG), and JET tokamaks are presented in order to test two plasma physics pedestal width models. The first model proposes a scaling of the pedestal width Delta/a proportional to rho*(1/2) to rho* based on the radial extent of the pedestal being set by the point where the linear turbulence growth rate exceeds the E x B velocity. In the multidevice experiment where rho* at the pedestal top was varied by a factor of four while other dimensionless parameters where kept fixed, it has been observed that the temperature pedestal width in real space coordinates scales with machine size, and that therefore the gyroradius scaling suggested by the model is not supported by the experiments. The density pedestal width is not invariant with rho* which after comparison with a simple neutral fuelling model may be attributed to variations in the neutral fuelling patterns. The second model, EPED1, is based on kinetic ballooning modes setting the limit of the radial extent of the pedestal region and leads to Delta(psi) proportional to beta p(1/2). All three devices show a scaling of the pedestal width in normalised poloidal flux as Delta(psi) proportional to beta p(1/2), as described by the kinetic ballooning model; however, on JET and AUG, this could not be distinguished from an interpretation where the pedestal is fixed in real space. Pedestal data from all three devices have been compared with the predictive pedestal model EPED1 and the model produces pedestal height values that match the experimental data well.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy