SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Breeze Tom) srt2:(2021)"

Sökning: WFRF:(Breeze Tom) > (2021)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gardner, Emma, et al. (författare)
  • Field boundary features can stabilise bee populations and the pollination of mass-flowering crops in rotational systems
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:10, s. 2287-2304
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinators experience large spatiotemporal fluctuations in resource availability when mass-flowering crops are rotated with resource-poor cereal crops. Yet, few studies have considered the effect this has on pollinator population stability, nor how this might be mitigated to maintain consistent crop pollination services. We assess the potential of boundary features (standard narrow 1 m grassy margins, hedgerows and wide 4 m agri-environment margins) to support and stabilise pollinator populations and pollination service in agricultural landscapes under crop rotation. Assuming a 6-year rotation, we use a process-based pollinator model to predict yearly pollinator population size and in-crop visitation rates to oilseed rape and field bean across 117 study landscapes in England with varying amounts of boundary features. We model both ground-nesting bumblebees and solitary bees and compare the predictions including and excluding boundary features from the landscapes. Ground-nesting bumblebee populations, whose longer-lifetime colonies benefit from continuity of resources, were larger and more stable (relative to the no-features scenario) in landscapes with more boundary features. Ground-nesting solitary bee populations were also larger but not significantly more stable, except with the introduction of wide permanent agri-environment margins, due to their shorter lifetimes and shorter foraging/dispersal ranges. Crop visitation by ground-nesting bumblebees was greater and more stable in landscapes with more boundary features, partly due to increased colony growth prior to crop flowering. Time averaged crop visitation by ground-nesting solitary bees was slightly lower, due to females dividing their foraging time between boundary features and the crop. However, despite this, the minimum pollination service delivered was higher, due to the more stable delivery. Synthesis and applications. Field boundary features have an important role in stabilising pollinator populations and pollination service in rotational systems, although maintenance of larger semi-natural habitat patches may be more effective for stabilising less mobile solitary bee populations. We recommend using combinations of boundary features, accounting for pollinator range when spacing features/rotating crops, and synchronising boundary feature management with crop rotation to maximise their stabilising benefits.
  •  
2.
  • Hutchinson, Louise A., et al. (författare)
  • Using ecological and field survey data to establish a national list of the wild bee pollinators of crops
  • 2021
  • Ingår i: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 315
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of wild bees for crop pollination is well established, but less is known about which species contribute to service delivery to inform agricultural management, monitoring and conservation. Using sites in Great Britain as a case study, we use a novel qualitative approach combining ecological information and field survey data to establish a national list of crop pollinating bees for four economically important crops (apple, field bean, oilseed rape and strawberry). A traits data base was used to establish potential pollinators, and combined with field data to identify both dominant crop flower visiting bee species and other species that could be important crop pollinators, but which are not presently sampled in large numbers on crops flowers. Whilst we found evidence that a small number of common, generalist species make a disproportionate contribution to flower visits, many more species were identified as potential pollinators, including rare and specialist species. Furthermore, we found evidence of substantial variation in the bee communities of different crops. Establishing a national list of crop pollinators is important for practitioners and policy makers, allowing targeted management approaches for improved ecosystem services, conservation and species monitoring. Data can be used to make recommendations about how pollinator diversity could be promoted in agricultural landscapes. Our results suggest agri-environment schemes need to support a higher diversity of species than at present, notably of solitary bees. Management would also benefit from targeting specific species to enhance crop pollination services to particular crops. Whilst our study is focused upon Great Britain, our methodology can easily be applied to other countries, crops and groups of pollinating insects.
  •  
3.
  •  
4.
  • Staton, Tom, et al. (författare)
  • Evaluating a trait-based approach to compare natural enemy and pest communities in agroforestry vs. arable systems
  • 2021
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582. ; 31:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Diversified farming systems, for example those that incorporate agroforestry elements, have been proposed as a solution that could maintain and improve multiple ecosystem services. However, habitat diversification in and around arable fields has complex and inconsistent effects on invertebrate crop pests and their natural enemies. This hinders the development of policy recommendations to promote the adoption of such management strategies for the provision of natural pest control services. Here, for the first time we conducted a trait-based approach to investigate the effect of farming system on plant, invertebrate herbivore and invertebrate natural enemy communities. We then evaluated this approach by comparing the results to those generated using a traditional taxonomic approach. At each of three working farms, we sampled within an agroforestry field (a diverse farming system comprising alleys of arable crops separated by tree rows), and within a paired non-diversified area of the farm (arable control field). Each of 96 sample points was sampled between eight and ten times, yielding 393,318 invertebrate specimens from 344 taxonomic groups. Diet specialization or granivory, lack of a pupal stage, and wing traits in invertebrates, along with late flowering, short flowering duration, creeping habit and perenniality in plants, were traits more strongly associated with agroforestry crop alleys than the arable control fields. We hypothesize that this is a result of reduced habitat disturbance and increased habitat complexity in the agroforestry system. Taxonomic richness and diversity were higher in the agroforestry crop alleys compared to the arable control fields, but these effects were stronger at lower trophic levels. However, functional trait diversity of natural enemies was significantly higher in the agroforestry crop alleys than the arable control fields, suggesting an improved level of biocontrol, which was not detected by traditional diversity metrics. Of eight key pest taxa, three were significantly suppressed in the agroforestry system, whilst two were more abundant, compared to the arable control fields. Trait-based approaches can provide a better mechanistic understanding of farming system effects on pests and their natural enemies, therefore we recommend their application and testing in future studies of diversified farming systems.
  •  
5.
  • Staton, Tom, et al. (författare)
  • Management to Promote Flowering Understoreys Benefits Natural Enemy Diversity, Aphid Suppression and Income in an Agroforestry System
  • 2021
  • Ingår i: agronomy. - : MDPI AG. - 2073-4395. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Agroforestry systems, where productive trees are integrated into agricultural land, can deliver benefits to biodiversity, natural pest control, and pollination, but the effects are highly variable. Recent advances in our understanding of flower strips in agricultural systems suggest that the management of the tree row understorey could be an important contributor to this variation. Here, we compare two cutting regimes for an understorey, originally seeded with the same flower mix, in the tree rows of an apple-arable agroforestry system: (i) uncut vegetation to promote a flowering understorey, and (ii) regularly mown vegetation. We recorded the effects of management on invertebrate pests, natural enemies, and pollinators, in both the apple and arable components. Apple trees above flowering understoreys supported significantly: (i) more natural enemies early in the season, (ii) fewer aphid colonies, (iii) fewer aphid-damaged fruits, and (iv) higher pollinator visitation, compared with those above mown understoreys. In the arable crop alleys, both the taxonomic richness and Shannon diversity of ground-based natural enemies were significantly higher adjacent to flowering understoreys, compared with those adjacent to mown understoreys, early in the season. Financial modelling based on aphid damage to apples, mowing costs, and income from Countryside Stewardship grants, indicated that flowering understoreys increased farm income by GBP 231.02 per ha of agroforestry compared with mown understoreys. Our results provide the first empirical evidence that management to promote flowering understoreys in agroforestry systems can be a win-win option to improve invertebrate diversity, associated ecosystem services, and farm income.
  •  
6.
  • Garratt, Michael P D, et al. (författare)
  • Opportunities to reduce pollination deficits and address production shortfalls in an important insect pollinated crop
  • 2021
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582.
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of 'pollination deficits', where maximum yield is not being achieved due to insufficient pollination, we use an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries as well as compare 'pollinator dependence' across different apple varieties. We found evidence of pollination deficits and in some cases, risks of over-pollination were even apparent where fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others, in terms of avoiding a pollination deficit and crop yield shortfalls due to sub-optimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrate that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help target local management to address deficits although crop variety has a strong influence on the role of pollinators.
  •  
7.
  • Vanderplanck, Maryse, et al. (författare)
  • Monitoring bee health in European agroecosystems using wing morphology and fat bodies
  • 2021
  • Ingår i: One Ecosystem. - : Pensoft Publishers. - 2367-8194. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Current global change substantially threatens pollinators, which directly impacts the pollination services underpinning the stability, structure and functioning of ecosystems. Amongst these threats, many synergistic drivers, such as habitat destruction and fragmentation, increasing use of agrochemicals, decreasing resource diversity, as well as climate change, are known to affect wild and managed bees. Therefore, reliable indicators for pollinator sensitivity to such threats are needed. Biological traits, such as phenotype (e.g. shape, size and asymmetry) and storage reserves (e.g. fat body size), are important pollinator traits linked to reproductive success, immunity, resilience and foraging efficiency and, therefore, could serve as valuable markers of bee health and pollination service potential.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy