SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Breivik Knut) srt2:(2020-2023)"

Sökning: WFRF:(Breivik Knut) > (2020-2023)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arp, Hans Peter H., et al. (författare)
  • The presence, emission and partitioning behavior of polychlorinated biphenyls in waste, leachate and aerosols from Norwegian waste-handling facilities
  • 2020
  • Ingår i: Science of the Total Environment. - : ELSEVIER. - 0048-9697 .- 1879-1026. ; 715, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Even though production and open use of polychlorinated biphenyls (PCBs) have been phased out in Western industrialised countries since the 1980s, PCBs were still present in waste collected from different waste handling facilities in Norway in 2013. Sums of seven indicator-PCBs (I-PCB7:PCB-28, -52, -101, -118, -138, -153 and -180) were highest in plastic waste (3700 +/- 1800 mu g/kg, n=15), waste electrical and electronic equipment (WEEE) (1300 +/- 400 mu g/kg, n=12) and fine vehicle fluff (1800 = 1400 mu g/kg, n=4) and lowest in glass waste, combustibles, bottom ash and fly ash (0.3 to 65 mu g/kg). Concentrations in leachate water varied from 1.7 to 2900 ng/L, with higher concentrations found at vehicle and WEEE handling facilities. Particles in leachate water exhibited similar PCB sorption properties as solid waste collected on site, with waste-water partitioning coefficients ranging from 10(5)to 10(7) .I-PCB7 in air samples collected at the sites were mostly in the gas phase (100-24000 pg/m(3)), compared to those associated with particles (9-1900 pg/m(3)). In contrast, brominated flame retardants (BFRs) in the same samples were predominantly found associated with particles (e.g. sum of 10 brominated diethyl ethers, Sigma BDE10, associated with particles 77-194,000 pg/m(3)) compared to the gas phase (Sigma DE10 6-473 pg/m(3)). Measured gas-phase I-PCB7 concentrations are less than predicted, assuming waste-air partitioning in equilibrium with predominant waste on site. However, the gas-particle partitioning behavior of PCBs and BFRs could be predicted using an established partitioning model for ambient aerosols. PCB emissions from Norwegian waste handling facilities occurred primarily in the form of atmospheric vapor or leachate particles.
  •  
2.
  • Breivik, Knut, et al. (författare)
  • Added value of the emissions fractions approach when assessing a chemical's potential for adverse effects as a result of long-range transport
  • 2023
  • Ingår i: Environmental Science Advances. - 2754-7000. ; 2:10, s. 1360-1371
  • Tidskriftsartikel (refereegranskat)abstract
    • It is of considerable interest to identify chemicals which may represent a hazard and risk to environmental and human health in remote areas. The OECD POV and LRTP Screening Tool (“The Tool”) for assessing chemicals for persistence (P) and long-range transport potential (LRTP) has been extensively used for combined P and LRTP assessments in various regulatory contexts, including the Stockholm Convention (SC) on Persistent Organic Pollutants (POPs). The approach in The Tool plots either the Characteristic Travel Distance (CTD, in km), a transport-oriented metric, or the Transfer Efficiency (TE, in %), which calculates the transfer from the atmosphere to surface compartments in a remote region, against overall persistence (POV). For a chemical to elicit adverse effects in remote areas, it not only needs to be transported and transferred to remote environmental surface media, it also needs to accumulate in these media. The current version of The Tool does not have a metric to quantify this process. We screened a list of >12 000 high production volume chemicals (HPVs) for the potential to be dispersed, transferred, and accumulate in surface media in remote regions using the three corresponding LRTP metrics of the emission fractions approach (EFA; ϕ1, ϕ2, ϕ3), as implemented in a modified version of The Tool. Comparing the outcome of an assessment based on CTD/TE and POV with the EFA, we find that the latter classifies a larger number of HPVs as having the potential for accumulation in remote regions than is classified as POP-like by the existing approach. In particular, the EFA identifies chemicals capable of accumulating in remote regions without fulfilling the criterion for POV. The remote accumulation fraction of the EFA is the LRTP assessment metric most suited for the risk assessment stage in Annex E of the SC. Using simpler metrics (such as half-life criteria, POV, and LRTP–POV combinations) in a hazard-based assessment according to Annex D is problematic as it may prematurely screen out many of the chemicals with potential for adverse effects as a result of long-range transport.
  •  
3.
  • Breivik, Knut, et al. (författare)
  • Introducing a nested multimedia fate and transport model for organic contaminants (NEM)
  • 2021
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; :8
  • Tidskriftsartikel (refereegranskat)abstract
    • Some organic contaminants, including the persistent organic pollutants (POPs), have achieved global distribution through long range atmospheric transport (LRAT). Regulatory efforts, monitoring programs and modelling studies address the LRAT of POPs on national, continental (e.g. Europe) and/or global scales. Whereas national and continental-scale models require estimates of the input of globally dispersed chemicals from outside of the model domain, existing global-scale models either have relatively coarse spatial resolution or are so computationally demanding that it limits their usefulness. Here we introduce the Nested Exposure Model (NEM), which is a multimedia fate and transport model that is global in scale yet can achieve high spatial resolution of a user-defined target region without huge computational demands. Evaluating NEM by comparing model predictions for PCB-153 in air with measurements at nine long-term monitoring sites of the European Monitoring and Evaluation Programme (EMEP) reveals that nested simulations at a resolution of 1° × 1° yield results within a factor of 1.5 of observations at sites in northern Europe. At this resolution, the model attributes more than 90% of the atmospheric burden within any of the grid cells containing an EMEP site to advective atmospheric transport from elsewhere. Deteriorating model performance with decreasing resolution (15° × 15°, 5° × 5° and 1° × 1°), manifested by overestimation of concentrations across most of northern Europe by more than a factor of 3, illustrates the effect of numerical diffusion. Finally, we apply the model to demonstrate how the choice of spatial resolution affect predictions of atmospheric deposition to the Baltic Sea. While we envisage that NEM may be used for a wide range of applications in the future, further evaluation will be required to delineate the boundaries of applicability towards chemicals with divergent fate properties as well as in environmental media other than air.
  •  
4.
  • Breivik, Knut, et al. (författare)
  • The Emissions Fractions Approach to Assessing the Long-Range Transport Potential of Organic Chemicals
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:17, s. 11983-11990
  • Tidskriftsartikel (refereegranskat)abstract
    • The assessment of long-range transport potential (LRTP) is enshrined in several frameworks for chemical regulation such as the Stockholm Convention. Screening for LRTP is commonly done with the OECD Pov and LRTP Screening Tool employing two metrics, characteristic travel distance (CTD) and transfer efficiency (TE). Here we introduce a set of three alternative metrics and implement them in the Tool’s model. Each metric is expressed as a fraction of the emissions in a source region. The three metrics quantify the extent to which the chemical (i) reaches a remote region (dispersion, ϕ1), (ii) is transferred to surface media in the remote region (transfer, ϕ2), and (iii) accumulates in these surface media (accumulation, ϕ3). In contrast to CTD and TE, the emissions fractions metrics can integrate transport via water and air, enabling comprehensive LRTP assessment. Furthermore, since there is a coherent relationship between the three metrics, the new approach provides quantitative mechanistic insight into different phenomena determining LRTP. Finally, the accumulation metric, ϕ3, allows assessment of LRTP in the context of the Stockholm Convention, where the ability of a chemical to elicit adverse effects in surface media is decisive. We conclude that the emission fractions approach has the potential to reduce the risk of false positives/negatives in LRTP assessments.
  •  
5.
  • Lunder Halvorsen, Helene, et al. (författare)
  • Spatial variability and temporal changes of POPs in European background air
  • 2023
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 299
  • Tidskriftsartikel (refereegranskat)abstract
    • Concentration data on POPs in air is necessary to assess the effectiveness of international regulations aiming to reduce the emissions of persistent organic pollutants (POPs) into the environment. POPs in European background air are continuously monitored using active- and passive air sampling techniques at a limited number of atmospheric monitoring stations. As a result of the low spatial resolution of such continuous monitoring, there is limited understanding of the main sources controlling the atmospheric burdens of POPs across Europe. The key objectives of this study were to measure the spatial and temporal variability of concentrations of POPs in background air with a high spatial resolution (n = 101) across 33 countries within Europe, and to use observations and models in concert to assess if the measured concentrations are mainly governed by secondary emissions or continuing primary emissions. Hexachlorobenzene (HCB) was not only the POP detected in highest concentrations (median: 67 pg/m3), but also the only POP that had significantly increased over the last decade. HCB was also the only POP that was positively correlated to latitude. For the other targeted POPs, the highest concentrations were observed in the southern part of Europe, and a declining temporal trend was observed. Spatial differences in temporal changes were observed. For example, γ-HCH (hexachlorocyclohexane) had the largest decrease in the south of Europe, while α-HCH had declined the most in central-east Europe. High occurrence of degradation products of the organochlorine pesticides and isomeric ratios indicated past usage. Model predictions of PCB-153 (2,2’,4,4’,5,5’-hexachlorobiphenyl) by the Global EMEP Multi-media Modelling System suggest that secondary emissions are more important than primary emissions in controlling atmospheric burdens, and that the relative importance of primary emissions are more influential in southern Europe compared to northern Europe. Our study highlights the major advantages of combining high spatial resolution observations with mechanistic modelling approaches to provide insights on the relative importance of primary- and secondary emission sources in Europe. Such knowledge is considered vital for policy makers aiming to assess the potential for further emission reduction strategies of legacy POPs.
  •  
6.
  • Möckel, Claudia, et al. (författare)
  • Soil pollution at a major West African E-waste recycling site : Contamination pathways and implications for potential mitigation strategies
  • 2020
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 137
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic contaminants (polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and chlorinated paraffins (CPs)) and heavy metals and metalloids (Ag, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Zn) were analysed in surface soil samples from the Agbogbloshie e-waste processing and dumping site in Accra (Ghana). In order to identify which of the pollutants are likely to be linked specifically to handling of e-waste, samples were also collected from the Kingtom general waste site in Freetown (Sierra Leone). The results were compared using principal component analyses (PCA). PBDE congeners found in technical octa-BDE mixtures, highly chlorinated PCBs and several heavy metals (Cu, Pb, Ni, Cd, Ag and Hg) showed elevated concentrations in the soils that are likely due to contamination by e-waste. PCAs associated those compounds with pyrogenic PAHs, suggesting that burning of e-waste, a common practice to isolate valuable metals, may cause this contamination. Moreover, other contamination pathways, especially incorporation of waste fragments into the soil, also appeared to play an important role in determining concentrations of some of the pollutants in the soil. Concentrations of several of these compounds were extremely high (especially PBDEs, heavy metals and SCCPs) and in some cases exceeded action guideline levels for soil. This indicates that exposure to these contaminants via the soil alone is potentially harmful to the recyclers and their families living on waste sites. Many organic contaminants and other exposure pathways such as inhalation are not yet included in such guidelines but may also be significant, given that deposition from the air following waste burning was identified as a major pollutant source.
  •  
7.
  • Platt, Stephen M., et al. (författare)
  • Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:5, s. 3321-3369
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zeppelin Observatory (78.90∘ N, 11.88∘ E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions.
  •  
8.
  • Rohler, Laura, et al. (författare)
  • Non-target and suspect characterisation of organic contaminants in Arctic air - Part 2 : Application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:14, s. 9031-9049
  • Tidskriftsartikel (refereegranskat)abstract
    • The Norwegian Arctic possesses a unique environment for the detection of new potential chemicals of emerging Arctic concern (CEACs) due to remoteness, sparse population and the low number of local contamination sources. Hence, a contaminant present in Arctic air is still considered a priority indication for its environmental stability and environmental mobility. Today, legacy persistent organic pollutants (POPs) and related conventional environmental pollutants are already well-studied because of their identification as Arctic pollutants in the 1980s. Many of them are implemented and reported in various national and international monitoring activities including the Arctic Monitoring and Assessment Programme (AMAP). These standard monitoring schemes, however, are based on compound-specific quantitative analytical methods. Under such conditions, the possibility for the identification of hitherto unidentified contaminants is limited and random at best. Today, new and advanced technological developments allow a broader, unspecific analytical approach as either targeted multicomponent analysis or suspect and non-target screening strategies. In order to facilitate such a wide range of compounds, a wide-scope sample clean-up method for high-volume air samples based on a combination of adsorbents was applied, followed by comprehensive two-dimensional gas chromatography separation and low-resolution time-of-flight mass spectrometric detection (GC x GC-LRMS). During the study reported here, simultaneous non-target and suspect screening were applied. The detection of over 700 compounds of interest in the particle phase and over 1200 compounds in the gaseous phase is reported. Of those, 62 compounds were confirmed with reference standards and 90 compounds with a probable structure (based upon mass spectrometric interpretation and library spectrum comparison). These included compounds already detected in Arctic matrices and compounds not detected previously (see also Fig. 1). In addition, 241 compounds were assigned a tentative structure or compound class. Hitherto unknown halogenated compounds, which are not listed in the mass spectral libraries used, were also detected and partly identified.
  •  
9.
  • Skogeng, Lovise P., et al. (författare)
  • Spatial distribution of Dechlorane Plus and dechlorane related compounds in European background air
  • 2023
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media SA. - 2296-665X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly chlorinated chemical Dechlorane Plus (DP) was introduced as a replacement flame retardant for Mirex, which is banned through the Stockholm Convention (SC) for its toxicity (T), environmental persistence (P), potential for bioaccumulation (B) and long-range environmental transport potential (LRETP). Currently, Dechlorane Plus is under consideration for listing under the Stockholm Convention and by the European Chemical Agency as it is suspected to also have potential for P, B, T and LRET. Knowledge of atmospheric concentrations of chemicals in background regions is vital to understand their persistence and long-range atmospheric transport but such knowledge is still limited for Dechlorane Plus. Also, knowledge on environmental occurrence of the less described Dechlorane Related Compounds (DRCs), with similar properties and uses as Dechlorane Plus, is limited. Hence, the main objective of this study was to carry out a spatial mapping of atmospheric concentrations of Dechlorane Plus and Dechlorane Related Compounds at background sites in Europe. Polyurethane foam passive air samplers were deployed at 99 sites across 33 European countries for 3 months in summer 2016 and analyzed for dechloranes. The study showed that syn- and anti-DP are present across the European continent (3 and 3, respectively), including parts of the Arctic. This supports that these compounds have potential for long-range atmospheric transport to remote regions. The highest concentrations of Dechlorane Plus were observed in central continental Europe, with anti-DP fractions close to the commercial mixture of Dechlorane Plus. The only detected Dechlorane Related Compounds was Dechlorane-602, which was found in 27% of the samples (3). The measured concentrations and spatial patterns of Dechlorane Plus and Dechlorane-602 in air across Europe indicate the influence of primary sources of these compounds on background concentrations in European air. Future air monitoring efforts targeting dechloranes is needed in both background and source areas, including consistent temporal trends.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy