SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Breton Simon Philippe) srt2:(2017)"

Sökning: WFRF:(Breton Simon Philippe) > (2017)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Breton, Simon-Philippe, et al. (författare)
  • A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation
  • 2017
  • Ingår i: Philosophical Transactions. Series A. - : ROYAL SOC. - 1364-503X .- 1471-2962. ; 375:2091
  • Forskningsöversikt (refereegranskat)abstract
    • Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions. This article is part of the themed issue 'Wind energy in complex terrains'.
  •  
2.
  • Breton, Simon-Philippe, et al. (författare)
  • Validation of the actuator disc and actuator line techniques for yawed rotor flows using the New MEXICO experimental data
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • Experimental data acquired in the New MEXICO experiment on a yawed 4.5m diameter rotor model turbine are used here to validate the actuator line (AL) and actuator disc (AD) models implemented in the Large Eddy Simulation code EllipSys3D in terms of loadingand velocity field. Even without modelling the geometry of the hub and nacelle, the AL and AD models produce similar results that are generally in good agreement with the experimental data under the various configurations considered. As expected, the AL model does better at capturing the induction effects from the individual blade tip vortices, while the AD model can reproduce the averaged features of the flow. The importance of using high quality airfoil data (including 3D corrections) as well as a fine grid resolution is highlighted by the results obtained. Overall, it is found that both models can satisfactorily predict the 3D velocity field and blade loading of the New MEXICO rotor under yawed inflow.
  •  
3.
  • Eriksson, Ola, 1979-, et al. (författare)
  • The Long distance wake behind Horns Rev I studied using large eddy simulations and a wind turbine parameterization in WRF
  • 2017
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 854
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present paper is to obtain a better understanding of long distance wakes generated by wind farms as a first step towards a better understanding of farm to farm interaction. The Horns Rev I (HR) wind farm is considered for this purpose, where comparisons are performed between microscale Large Eddy Simulations (LES) using an Actuator Disc model (ACD), mesoscale simulations in the Weather Research and Forecasting Model (WRF) using a wind turbine parameterization, production data as well as wind measurements in the wind farm wake. The LES is manually set up according to the wind conditions obtained from the mesoscale simulation as a first step towards a meso/microscale coupling.The LES using an ACD are performed in the EllipSys3D code. A forced boundary layer (FBL) approach is used to introduce the desired wind shear and the atmospheric turbulence field from the Mann model. The WRF uses a wind turbine parameterization based on momentum sink. To make comparisons with the LESs and the site data possible an idealized setup of WRF is used in this study.The case studied here considers a westerly wind direction sector (at hub height) of 270 ± 2.5 degrees and a wind speed of 8 ± 0.5 m/s. For both the simulations and the site data a neutral atmosphere is considered. The simulation results for the relative production as well as the wind speed 2 km and 6 km downstream from the wind farm are compared to site data. Further comparisons between LES and WRF are also performed regarding the wake recovery and expansion.The results are also compared to an earlier study of HR using LES as well as an earlier comparison of LES and WRF. Overall the results in this study show a better agreement between LES and WRF as well as better agreement between simulations and site data.The procedure of using the profile from WRF as inlet to LES can be seen as a simplified coupling of the models that could be developed further to combine the methods for cases of farm to farm interaction.
  •  
4.
  • Simisiroglou, Nikolaos, et al. (författare)
  • Validation of the actuator disc approach using small-scale model wind turbines
  • 2017
  • Ingår i: Wind Energy Science. - : Copernicus GmbH. - 2366-7443 .- 2366-7451. ; 2, s. 587-601
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study is the validation of the implementation of an actuator disc (ACD) model in the computational fluid dynamics (CFD) code PHOENICS. The flow behaviour for three wind turbine cases is investigated numerically and compared to wind tunnel measurements: (A) the flow around a single model wind turbine, (B) the wake interaction between two in-line model wind turbines for a uniform inflow of low turbulence intensity and (C) the wake interaction between two in-line model wind turbines at different separation distances in a uniform or sheared inflow of high turbulence intensity. This is carried out using Reynolds-averaged Navier–Stokes (RANS) simulations and an ACD technique in the CFD code PHOENICS. The computations are conducted for the design condition of the rotors using four different turbulence closure models and five different thrust distributions. The computed axial velocity field as well as the turbulence kinetic energy are compared with hot-wire anemometry (HWA) measurements. For the cases with two in-line wind turbines, the thrust coefficient is also computed and compared with measurements. The results show that for different inflow conditions and wind turbine spacings the proposed method is able to predict the overall behaviour of the flow with low computational effort. When using the k-ε and Kato–Launder k-ε turbulence models the results are generally in closer agreement with the measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy