SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brittain M.) srt2:(2020-2024)"

Sökning: WFRF:(Brittain M.) > (2020-2024)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Tapia-Ruiz, Nuria, et al. (författare)
  • 2021 roadmap for sodium-ion batteries
  • 2021
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid-electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology.
  •  
3.
  • Patterson, Nick, et al. (författare)
  • Large-scale migration into Britain during the Middle to Late Bronze Age
  • 2022
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; , s. 588-594
  • Tidskriftsartikel (refereegranskat)abstract
    • Present-day people from England and Wales harbour more ancestry derived from Early European Farmers (EEF) than people of the Early Bronze Age1. To understand this, we generated genome-wide data from 793 individuals, increasing data from the Middle to Late Bronze and Iron Age in Britain by 12-fold, and Western and Central Europe by 3.5-fold. Between 1000 and 875 BC, EEF ancestry increased in southern Britain (England and Wales) but not northern Britain (Scotland) due to incorporation of migrants who arrived at this time and over previous centuries, and who were genetically most similar to ancient individuals from France. These migrants contributed about half the ancestry of Iron Age people of England and Wales, thereby creating a plausible vector for the spread of early Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry becoming more similar across central and western Europe in the Middle to Late Bronze Age, coincident with archaeological evidence of intensified cultural exchange2-6. There was comparatively less gene flow from continental Europe during the Iron Age, and Britain's independent genetic trajectory is also reflected in the rise of the allele conferring lactase persistence to ~50% by this time compared to ~7% in central Europe where it rose rapidly in frequency only a millennium later. This suggests that dairy products were used in qualitatively different ways in Britain and in central Europe over this period.
  •  
4.
  • Allen-Perkins, Alfonso, et al. (författare)
  • CropPol : a dynamic, open and global database on crop pollination
  • 2022
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 103:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved.
  •  
5.
  •  
6.
  • Senapathi, Deepa, et al. (författare)
  • Wild insect diversity increases inter-annual stability in global crop pollinator communities
  • 2021
  • Ingår i: Royal Society of London. Proceedings B. Biological Sciences. - : The Royal Society. - 1471-2954 .- 0962-8452. ; 288:1947
  • Tidskriftsartikel (refereegranskat)abstract
    • While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.
  •  
7.
  • Huser, Brian, et al. (författare)
  • Spatial and temporal variation in Arctic freshwater chemistry : Reflecting climate-induced landscape alterations and a changing template for biodiversity
  • 2022
  • Ingår i: Freshwater Biology. - : John Wiley & Sons. - 0046-5070 .- 1365-2427. ; 67:1, s. 14-29
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Freshwater chemistry across the circumpolar region was characterised using a pan-Arctic data set from 1,032 lake and 482 river stations. Temporal trends were estimated for Early (1970-1985), Middle (1986-2000), and Late (2001-2015) periods. Spatial patterns were assessed using data collected since 2001.2. Alkalinity, pH, conductivity, sulfate, chloride, sodium, calcium, and magnesium (major ions) were generally higher in the northern-most Arctic regions than in the Near Arctic (southern-most) region. In particular, spatial patterns in pH, alkalinity, calcium, and magnesium appeared to reflect underlying geology, with more alkaline waters in the High Arctic and Sub Arctic, where sedimentary bedrock dominated.3. Carbon and nutrients displayed latitudinal trends, with lower levels of dissolved organic carbon (DOC), total nitrogen, and (to a lesser extent) total phosphorus (TP) in the High and Low Arctic than at lower latitudes. Significantly higher nutrient levels were observed in systems impacted by permafrost thaw slumps.4. Bulk temporal trends indicated that TP was higher during the Late period in the High Arctic, whereas it was lower in the Near Arctic. In contrast, DOC and total nitrogen were both lower during the Late period in the High Arctic sites. Major ion concentrations were higher in the Near, Sub, and Low Arctic during the Late period, but the opposite bulk trend was found in the High Arctic.5. Significant pan-Arctic temporal trends were detected for all variables, with the most prevalent being negative TP trends in the Near and Sub Arctic, and positive trends in the High and Low Arctic (mean trends ranged from +0.57%/year in the High/Low Arctic to -2.2%/year in the Near Arctic), indicating widespread nutrient enrichment at higher latitudes and oligotrophication at lower latitudes.6. The divergent P trends across regions may be explained by changes in deposition and climate, causing decreased catchment transport of P in the south (e.g. increased soil binding and trapping in terrestrial vegetation) and increased P availability in the north (deepening of the active layer of the permafrost and soil/sediment sloughing). Other changes in concentrations of major ions and DOC were consistent with projected effects of ongoing climate change. Given the ongoing warming across the Arctic, these region-specific changes are likely to have even greater effects on Arctic water quality, biota, ecosystem function and services, and human well-being in the future.
  •  
8.
  • Carpenter, Stephen, et al. (författare)
  • Using Unoccupied Aerial Vehicles (UAVs) to Map Seagrass Cover from Sentinel-2 Imagery
  • 2022
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 14:3, s. 477-477
  • Tidskriftsartikel (refereegranskat)abstract
    • Seagrass habitats are ecologically valuable and play an important role in sequestering and storing carbon. There is, thus, a need to estimate seagrass percentage cover in diverse environments in support of climate change mitigation, marine spatial planning and coastal zone management. In situ approaches are accurate but time-consuming, expensive and may not represent the larger spatial units collected by satellite imaging. Hence, there is a need for a consistent methodology that uses accurate point-based field surveys to deliver high-quality mapping of percentage seagrass cover at large spatial scales. Here, we develop a three-step approach that combines in situ (quadrats), aerial (unoccupied aerial vehicle—UAV) and satellite data to map percentage seagrass cover at Turneffe Atoll, Belize, the largest atoll in the northern hemisphere. First, the optical bands of four UAV images were used to calculate seagrass cover, in combination with in situ data. The seagrass cover calculated from the UAV was then used to develop training and validation datasets to estimate seagrass cover in Sentinel-2 pixels. Next, non-seagrass areas were identified in the Sentinel-2 data and removed by object-based classification, followed by a pixel-based regression to calculate seagrass percentage cover. Using this approach, percentage seagrass cover was mapped using UAVs (R2 = 0.91 between observed and mapped distributions) and using Sentinel-2 data (R2 = 0.73). This work provides the first openly available and explorable map of seagrass percentage cover across Turneffe Atoll, where we estimate approximately 242 km2 of seagrass above 10% cover is located. We estimate that this approach offers 30 times more data for training satellite data than traditional methods, therefore presenting a substantial reduction in cost-per-point for data. Furthermore, the increase in data helps deliver a high-quality seagrass cover map, suitable for resolving trends of deteriorating, stable or recovering seagrass environments at 10 m2 resolution to underpin evidence-based management and conservation of seagrass.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy