SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Broda A.) srt2:(2020-2021)"

Sökning: WFRF:(Broda A.) > (2020-2021)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Broda, Martyna, et al. (författare)
  • Increased expression of ANAC017 primes for accelerated senescence
  • 2021
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 186:4, s. 2205-2221
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies in Arabidopsis (Arabidopsis thaliana) have reported conflicting roles for NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), a transcription factor regulating mitochondria-to-nuclear signaling, and its closest paralog NAC DOMAIN CONTAINING PROTEIN 16 (ANAC016), in leaf senescence. By synchronizing senescence in individually darkened leaves of knockout and overexpressing mutants from these contrasting studies, we demonstrate that elevated ANAC017 expression consistently causes accelerated senescence and cell death. A time-resolved transcriptome analysis revealed that senescence-associated pathways such as autophagy are not constitutively activated in ANAC017 overexpression lines, but require a senescence-stimulus to trigger accelerated induction. ANAC017 transcript and ANAC017-target genes are constitutively upregulated in ANAC017 overexpression lines, but surprisingly show a transient "super-induction" 1 d after senescence induction. This induction of ANAC017 and its target genes is observed during the later stages of age-related and dark-induced senescence, indicating the ANAC017 pathway is also activated in natural senescence. In contrast, knockout mutants of ANAC017 showed lowered senescence-induced induction of ANAC017 target genes during the late stages of dark-induced senescence. Finally, promoter binding analyses show that the ANAC016 promoter sequence is directly bound by ANAC017, so ANAC016 likely acts downstream of ANAC017 and is directly transcriptionally controlled by ANAC017 in a feed-forward loop during late senescence.
  •  
4.
  • Marciniak, Magdalena, et al. (författare)
  • Impact of Stripe Shape on the Reflectivity of Monolithic High Contrast Gratings
  • 2021
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 8:11, s. 3173-3184
  • Tidskriftsartikel (refereegranskat)abstract
    • Monolithic high contrast gratings (MHCGs) composed of a one-dimensional grating patterned in a monolithic layer provide up to 100% optical power reflectance and can be fabricated in almost any semiconductor and dielectric material used in modern optoelectronics. MHCGs enable monolithic integration, polarization selectivity, and versatile phase tuning. They can be from 10 to 20 times thinner than distributed Bragg reflectors. The subwavelength dimensions of MHCGs significantly reduce the possibility of ensuring the smoothness of the sidewalls of the MHCG stripes and make precise control of the shape of the MHCG stripe cross-section difficult during the etching process. The question is then whether it is more beneficial to improve the etching methods to obtain a perfect cross-section shape, as assumed by the design, or whether it is possible to find geometrical parameters that enable high optical power reflectance using the shape that a given etching method provides. Here, we present a numerical study supported by the experimental characterization of MHCGs fabricated in various materials using a variety of common surface nanometer-scale shaping methods. We demonstrate that MHCG stripes with an arbitrary cross-section shape can provide optical power reflectance of nearly 100%, which greatly relaxes their fabrication requirements. Moreover, we show that optical power reflectance exceeding 99% with a record spectral bandwidth of more than 20% can be achieved for quasi-Trapezoidal cross-sections of MHCGs. We also show that sidewall corrugations of the MHCG stripes have only a slight impact on MHCG optical power reflectance if the amplitude of the corrugation is less than 16% of the MHCG period. This level of stripe fabrication precision can be achieved using the most current surface etching methods. Our results are significant for the design and production of a variety of photonic devices employing MHCGs. The flexibility with regard to cross-section shape facilitates the reliable fabrication of highly reflective subwavelength grating mirrors. This in turn will enable the manufacture of monolithically integrated high-quality-factor optical micro-and nanocavity devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy