SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brookes Justin) srt2:(2020-2024)"

Sökning: WFRF:(Brookes Justin) > (2020-2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Yuyang, et al. (författare)
  • Changes in Water Chemistry Associated with Rainstorm Events Increase Carbon Emissions from the Inflowing River Mouth of a Major Drinking Water Reservoir
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:22, s. 16494-16505
  • Tidskriftsartikel (refereegranskat)abstract
    • Large reservoirs are hotspots for carbon emissions, and the continued input and decomposition of terrestrial dissolved organic matter (DOM) from upstream catchments is an important source of carbon emissions. Rainstorm events can cause a surge in DOM input; however, periodic sampling often fails to fully capture the impact of these discrete rainstorm events on carbon emissions. We conducted a set of frequent observations prior to and following a rainstorm event in a major reservoir Lake Qiandao (China; 580 km(2)) from June to July 2021 to investigate how rainstorms alter water chemistry and CO2 and CH4 emissions. We found that the mean CO2 efflux (FCO2) (13.2 +/- 9.3 mmol m(-)(2) d(-1)) and CH4 efflux (FCH4) (0.12 +/- 0.02 mmol m(-2) d(-1)) in the postrainstorm campaign were significantly higher than those in the prerainstorm campaign (-3.8 +/- 3.0 and +0.06 +/- 0.02 mmol m(-)(2) d(-)(1), respectively). FCO2 and FCH4 increased with increasing nitrogen and phosphorus levels, elevated DOM absorption (a(350)), specific UV absorbance SUVA(254), and terrestrial humic-like fluorescence. Furthermore, FCO2 and FCH4 decreased with increasing chlorophyll-a (Chl-a), dissolved oxygen (DO), and pH. A five-day laboratory anoxic bioincubation experiment further revealed a depletion of terrestrial-DOM concurrent with increased CO2 and CH4 production. We conclude that rainstorms boost the emission of CO2 and CH4 fueled by the surge and decomposition of fresh terrestrially derived biolabile DOM in this and likely many other reservoir's major inflowing river mouths.
  •  
2.
  • Nava, Veronica, et al. (författare)
  • Plastic debris in lakes and reservoirs
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 619:7969, s. 317-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastic debris is thought to be widespread in freshwater ecosystems globally(1). However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging(2,3). Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 mu m) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris(4). Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.
  •  
3.
  • Reinl, Kaitlin L., et al. (författare)
  • Cyanobacterial blooms in oligotrophic lakes : Shifting the high-nutrient paradigm
  • 2021
  • Ingår i: Freshwater Biology. - : John Wiley & Sons. - 0046-5070 .- 1365-2427. ; 66:9, s. 1846-1859
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater cyanobacterial blooms have become ubiquitous, posing major threats to ecological and public health. Decades of research have focused on understanding drivers of these blooms with a primary focus on eutrophic systems; however, cyanobacterial blooms also occur in oligotrophic systems, but have received far less attention, resulting in a gap in our understanding of cyanobacterial blooms overall. In this review, we explore evidence of cyanobacterial blooms in oligotrophic freshwater systems and provide explanations for those occurrences. We show that through their unique physiological adaptations, cyanobacteria are able to thrive under a wide range of environmental conditions, including low-nutrient waterbodies. We contend that to fully understand cyanobacterial blooms, and thereby mitigate and manage them, we must expand our inquiries to consider systems along the trophic gradient, and not solely focus on eutrophic systems, thus shifting the high-nutrient paradigm to a trophic-gradient paradigm.
  •  
4.
  • Wang, Jinling, et al. (författare)
  • Urbanization in developing countries overrides catchment productivity in fueling inland water CO2 emissions
  • 2022
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 29:1, s. 1-4
  • Tidskriftsartikel (refereegranskat)abstract
    • We compiled a nationwide dataset of carbon dioxide (CO2) efflux from 1405 measurements, and found that lakes, reservoirs, and rivers emit a total of 61.9 ± 55.3 TgC as CO2 each year, corresponding to 6.3% of the annual total national CO2 emission in 2020. Our analysis showed that the presence of anthropogenic disturbances in catchments strongly influences the emission of CO2 from these waters in the non-pristine areas, masking the catchment productivity effect on the emission of CO2. Our results highlight the need for adjusting climate change models for taking into account anthropogenic effects on CO2 emissions from inland waters.
  •  
5.
  • Weyhenmeyer, Gesa A., Professor, et al. (författare)
  • Global Lake Health in the Anthropocene : Societal Implications and Treatment Strategies
  • 2024
  • Ingår i: Earth's Future. - : American Geophysical Union (AGU). - 2328-4277. ; 12:4
  • Forskningsöversikt (refereegranskat)abstract
    • The world's 1.4 million lakes (>= 10 ha) provide many ecosystem services that are essential for human well-being; however, only if their health status is good. Here, we reviewed common lake health issues and classified them using a simple human health-based approach to outline that lakes are living systems that are in need of oxygen, clean water and a balanced energy and nutrient supply. The main reason for adopting some of the human health terminology for the lake health classification is to increase the awareness and understanding of global lake health issues. We show that lakes are exposed to various anthropogenic stressors which can result in many lake health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Of particular concern for human well-being is the widespread lake drying, which is a severe circulatory issue with many cascading effects on lake health. We estimated that similar to 115,000 lakes evaporate twice as much water as they gain from direct precipitation, making them vulnerable to potential drying if inflowing waters follow the drying trend, putting more than 153 million people at risk who live in close vicinity to those lakes. Where lake health issues remain untreated, essential ecosystem services will decline or even vanish, posing a threat to the well-being of millions of people. We recommend coordinated multisectoral and multidisciplinary prevention and treatment strategies, which need to include a follow-up of the progress and an assessment of the resilience of lakes to intensifying threats. Priority should be given to implementing sewage water treatment, mitigating climate change, counteracting introductions of non-native species to lakes and decreasing uncontrolled anthropogenic releases of chemicals into the hydro-, bio-, and atmosphere. Lakes around the world come in an array of sizes, shapes and colors, each telling a unique story of geological history and environmental importance. When lakes are healthy they contribute to the achievement of the global sustainable development goals by providing many important ecosystem services. Lakes are, however, not always healthy. Here, it is shown that lakes can suffer from a large variety of health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Without improved treatment strategies, many of the health issues may become chronic, affecting millions of people who are dependent on the ecosystem services from the lakes. To prevent and cure lakes from critical health conditions, strategies that are similar to those used in human healthcare should be applied: intervention and preventative actions before health problems occur, regular screening and early identification of lake health issues, and remediation and mitigation efforts at an appropriate scale, spanning from local to global. Anthropogenic stressors can cause lake health issues that range from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning Lake health varies geographically, with the highest risk of critical conditions occurring in densely populated low-income countries There is an urgent need to follow-up the progress of treatments and to make adjustments whenever needed
  •  
6.
  • Zhou, Yongqiang, et al. (författare)
  • Key factors driving dissolved organic matter composition and bioavailability in lakes situated along the Eastern Route of the South-to-North Water Diversion Project, China
  • 2023
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 233
  • Tidskriftsartikel (refereegranskat)abstract
    • The Eastern Route of the South-to-North Water Diversion Project (SNWDP-ER) is a large scale multi-decade infrastructure project aiming to divert substantial amounts of water (approximate to 45 billion m3 yr-1) to alleviate water shortage in comparatively arid regions of northern China. The project has ramifications for hydrological con-nectivity and biogeochemical cycling of dissolved organic matter (DOM) in regional lakes affected by the project. We carried out an extensive field sampling campaign along the SNWDP-ER in different hydrological seasons of 2018 and monthly observations in Lake Hongze and Lake Luoma from April 2018 to June 2021. We found the lakes connecting to the SNWDP-ER had higher mean DOC, specific UV absorbance, higher ratio of humic-like to protein-like fluorophores (Humic : Protein), and shallower spectral slope (S275-295) in the wet season compared to the wet-to-dry transition, and dry seasons. The southern lakes and Yangtze River had lower DOC concen-tration, bioavailable DOC (BDOC), and higher DOM aromaticity compared to the northern two downstream lakes. Ultrahigh-resolution mass spectrometry (FT-ICR MS) revealed higher relative abundance of CHO-containing and aromatic compounds in the Yangtze River and the southern three upstream lakes compared to the northern two lakes. The data from Lake Hongze and Lake Luoma, studied in different hydrological seasons, suggest that water delivery had high consistency in DOM composition and BDOC over the season. We conclude that positioning along the watercourse and seasonally variable hydrological conditions play an important role in influencing the DOM composition and bioavailability of key lakes connecting to the SNWDP-ER. Our results indicated that the water diversion project delivers water with low DOC concentration and higher aromaticity and thus is of higher quality since it has higher DOM removal potential during drinking water treatment.
  •  
7.
  • Zhou, Yongqiang, et al. (författare)
  • Rainstorms drive export of aromatic and concurrent bio-labile organic matter to a large eutrophic lake and its major tributaries
  • 2023
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 229
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes are hotspots for global carbon cycling, yet few studies have explored how rainstorms alter the flux, composition, and bio-lability of dissolved organic matter (DOM) in inflowing rivers using high-frequency monitoring. We conducted extensive campaigns in the watershed of Lake Taihu and made daily observations for three years in its two largest inflowing tributaries, River Dapu and River Yincun. We found higher DOC, bio-labile DOC (BDOC), and specific UV absorbance (SUVA(254)) levels in the northwestern inflowing regions compared with the remaining lake regions. DOC and BDOC increased during rainstorms in River Dapu, and DOC declined due to local dilution and BDOC increased during rainstorms in River Yincun. We found that rainstorms resulted in increased DOM absorbance a(350), SUVA(254), and humification index (HIX) and enhanced percentages of humic-like fluorescent components, %polycyclic condensed aromatic and %polyphenolic compounds as revealed from ultrahigh-resolution mass spectrometry (FT-ICR MS), while spectral slope (S275-295) and the percentages of protein-like C1 and C3 declined during rainstorms compared with other seasons. This can be explained by a combined flushing of catchment soil organic matter and household effluents. The annual inflows of DOC and BDOC to Lake Taihu were 1.15 +/- 0.18 x 10(4) t C yr(-1) and 0.23 +/- 0.06 x 104 t C yr(-1) from River Dapu and 2.92 +/- 0.42 x 103 t C yr(-1) and 0.53 +/- 0.07 x 10(3) t C yr(-1) from River Yincun, respectively, and the fluxes of DOC and BDOC from both rivers increased during rainstorms. We found an elevated frequency of heavy rainfall and rainstorms in the lake watershed during the past six decades. We conclude that an elevated input of terrestrial organic-rich DOM with concurrent high aromaticity and high bio-lability from inflowing rivers is likely to occur in a future wetter climate.
  •  
8.
  • Zhou, Yongqiang, et al. (författare)
  • Unraveling the Role of Anthropogenic and Natural Drivers in Shaping the Molecular Composition and Biolability of Dissolved Organic Matter in Non-pristine Lakes
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:7, s. 4655-4664
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes receive and actively process terrestrial dissolved organic matter (DOM) and play an important role in the global carbon cycle. Urbanization results in elevated inputs of nonpoint-source DOM to headwater streams. Retention of water in lakes allows time for alteration and transformation of the chemical composition of DOM by microbes and UV radiation. Yet, it remains unclear how anthropogenic and natural drivers impact the composition and biolability of DOM in non-pristine lakes. We used optical spectroscopy, Fourier transform ion cyclotron mass spectrometry, stable isotopic measurements, and laboratory bioincubations to investigate the chemical composition and biolability of DOM across two large data sets of lakes associated with a large gradient of urbanization in lowland Eastern China, encompassing a total of 99 lakes. We found that increased urban land use, gross domestic products, and population density in the catchment were associated with an elevated trophic level index, higher chlorophyll-a, higher bacterial abundance, and a higher amount of organic carbon with proportionally higher contribution of aliphatic and peptide-like DOM fractions, which can be highly biolabile. Catchment areas, water depth, lake area: catchment area, gross primary productivity, delta O-18-H2O, and bacterial abundance, however, had comparatively little linkage with DOM composition and biolability. Urban land use is currently intensifying in many developing countries, and our results anticipate an increase in the level of biolabile aliphatic DOM from nonpoint sources and accelerated carbon cycling in lake ecosystems in such regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy