SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brown Anthony) srt2:(2015-2019)"

Search: WFRF:(Brown Anthony) > (2015-2019)

  • Result 1-10 of 132
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Aprile, E., et al. (author)
  • Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T
  • 2019
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122:14
  • Journal article (peer-reviewed)abstract
    • We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 x 10(-42) cm(2) at 30 GeV/c(2) and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.
  •  
5.
  • Aprile, E., et al. (author)
  • Dark Matter Search Results from a One Ton-Year Exposure of XENON1T
  • 2018
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 121:11
  • Journal article (peer-reviewed)abstract
    • We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30 +/- 0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4; 10.6] keV(ee) ([4.9; 40.9] keV(nr)), exhibits an ultralow electron recoil background rate of [82(-3)(+5) (syst) +/- 3 stat)] events/ton yr keV(ee)). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c(2), with a minimum of 4.1 x 10(-47) cm(2) at 30 GeV/c(2) and a 90% confidence level.
  •  
6.
  • Aprile, E., et al. (author)
  • Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector
  • 2017
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:4
  • Journal article (peer-reviewed)abstract
    • We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34 kg x 224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6-240) keV(nr). The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and set exclusion limits on this model as well.
  •  
7.
  • Aprile, E., et al. (author)
  • First Dark Matter Search Results from the XENON1T Experiment
  • 2017
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 119:18
  • Journal article (peer-reviewed)abstract
    • We report the first dark matter search results from XENON1T, a similar to 2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042 +/- 12)-kg fiducial mass and in the [5, 40] keV(nr) energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93 +/- 0.25) x 10(-4) events/(kg x day x keV(ee)), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c(2), with a minimum of 7.7 x 10(-47) cm(2) for 35-GeV/c(2) WIMPs at 90% C.L.
  •  
8.
  • Aprile, E., et al. (author)
  • First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment
  • 2019
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122:7
  • Journal article (peer-reviewed)abstract
    • We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, no significant excess is found, leading to an upper limit cross section of 6.4 x 10(-46) cm(2) (90% confidence level) at 30 GeV/c(2) WIMP mass.
  •  
9.
  • Aprile, E., et al. (author)
  • Low-mass dark matter search using ionization signals in XENON100
  • 2016
  • In: Physical Review D. - 2470-0010. ; 94:9
  • Journal article (peer-reviewed)abstract
    • We perform a low-mass dark matter search using an exposure of 30 kg x yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV/c(2) above 1.4 x 10(-41) cm(2) at 90% confidence level.
  •  
10.
  • Aprile, E., et al. (author)
  • Material radioassay and selection for the XENON1T dark matter experiment
  • 2017
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Journal article (peer-reviewed)abstract
    • The XENON1T dark matter experiment aims to detect weakly interactingmassive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 132
Type of publication
journal article (128)
other publication (2)
research review (2)
Type of content
peer-reviewed (127)
other academic/artistic (5)
Author/Editor
Chen, L (87)
Aad, G (87)
Abbott, B. (87)
Abdinov, O (87)
Zwalinski, L. (87)
Gregersen, K. (87)
show more...
Kalderon, C.W. (87)
Poettgen, R. (87)
Aben, R. (87)
Abreu, H. (87)
Abreu, R. (87)
Adye, T. (87)
Agatonovic-Jovin, T. (87)
Ahmadov, F. (87)
Aielli, G. (87)
Albert, J. (87)
Albrand, S. (87)
Aleksa, M. (87)
Aleksandrov, I. N. (87)
Alexander, G. (87)
Alexopoulos, T. (87)
Alhroob, M. (87)
Alimonti, G. (87)
Alio, L. (87)
Aloisio, A. (87)
Alonso, A. (87)
Alonso, F. (87)
Alpigiani, C. (87)
Altheimer, A. (87)
Alviggi, M. G. (87)
Amako, K. (87)
Amelung, C. (87)
Amidei, D. (87)
Amorim, A. (87)
Amoroso, S. (87)
Amram, N. (87)
Amundsen, G. (87)
Anastopoulos, C. (87)
Ancu, L. S. (87)
Andari, N. (87)
Andeen, T. (87)
Anders, G. (87)
Anderson, K. J. (87)
Andreazza, A. (87)
Angelidakis, S. (87)
Anger, P. (87)
Angerami, A. (87)
Anghinolfi, F. (87)
Anjos, N. (87)
Annovi, A. (87)
show less...
University
Lund University (99)
Stockholm University (95)
Uppsala University (77)
Royal Institute of Technology (69)
Karolinska Institutet (8)
University of Gothenburg (5)
show more...
Umeå University (5)
Chalmers University of Technology (3)
Mid Sweden University (2)
Högskolan Dalarna (2)
Linköping University (1)
Stockholm School of Economics (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (132)
Research subject (UKÄ/SCB)
Natural sciences (120)
Medical and Health Sciences (14)
Humanities (2)
Engineering and Technology (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view